Laser Modeling: A Numerical Approach with Algebra and Calculus
Offering a fresh take on laser engineering, Laser Modeling: A Numerical Approach with Algebra and Calculus presents algebraic models and traditional calculus-based methods in tandem to make concepts easier to digest and apply in the real world. Each technique is introduced alongside a practical, solved example based on a commercial laser. Assuming some knowledge of the nature of light, emission of radiation, and basic atomic physics, the text:

  • Explains how to formulate an accurate gain threshold equation as well as determine small-signal gain
  • Discusses gain saturation and introduces a novel pass-by-pass model for rapid implementation of "what if?" scenarios
  • Outlines the calculus-based Rigrod approach in a simplified manner to aid in comprehension
  • Considers thermal effects on solid-state lasers and other lasers with new and efficient quasi-three-level materials
  • Demonstrates how the convolution method is used to predict the effect of temperature drift on a DPSS system
  • Describes the technique and technology of Q-switching and provides a simple model for predicting output power
  • Addresses non-linear optics and supplies a simple model for calculating optimal crystal length
  • Examines common laser systems, answering basic design questions and summarizing parameters
  • Includes downloadable Microsoft® Excel spreadsheets, allowing models to be customized for specific lasers

Don’t let the mathematical rigor of solutions get in the way of understanding the concepts. Laser Modeling: A Numerical Approach with Algebra and Calculus covers laser theory in an accessible way that can be applied immediately, and numerically, to real laser systems.

1133955038
Laser Modeling: A Numerical Approach with Algebra and Calculus
Offering a fresh take on laser engineering, Laser Modeling: A Numerical Approach with Algebra and Calculus presents algebraic models and traditional calculus-based methods in tandem to make concepts easier to digest and apply in the real world. Each technique is introduced alongside a practical, solved example based on a commercial laser. Assuming some knowledge of the nature of light, emission of radiation, and basic atomic physics, the text:

  • Explains how to formulate an accurate gain threshold equation as well as determine small-signal gain
  • Discusses gain saturation and introduces a novel pass-by-pass model for rapid implementation of "what if?" scenarios
  • Outlines the calculus-based Rigrod approach in a simplified manner to aid in comprehension
  • Considers thermal effects on solid-state lasers and other lasers with new and efficient quasi-three-level materials
  • Demonstrates how the convolution method is used to predict the effect of temperature drift on a DPSS system
  • Describes the technique and technology of Q-switching and provides a simple model for predicting output power
  • Addresses non-linear optics and supplies a simple model for calculating optimal crystal length
  • Examines common laser systems, answering basic design questions and summarizing parameters
  • Includes downloadable Microsoft® Excel spreadsheets, allowing models to be customized for specific lasers

Don’t let the mathematical rigor of solutions get in the way of understanding the concepts. Laser Modeling: A Numerical Approach with Algebra and Calculus covers laser theory in an accessible way that can be applied immediately, and numerically, to real laser systems.

115.0 In Stock
Laser Modeling: A Numerical Approach with Algebra and Calculus

Laser Modeling: A Numerical Approach with Algebra and Calculus

by Mark Steven Csele
Laser Modeling: A Numerical Approach with Algebra and Calculus

Laser Modeling: A Numerical Approach with Algebra and Calculus

by Mark Steven Csele

Paperback(Reprint)

$115.00 
  • SHIP THIS ITEM
    In stock. Ships in 3-7 days. Typically arrives in 3 weeks.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Offering a fresh take on laser engineering, Laser Modeling: A Numerical Approach with Algebra and Calculus presents algebraic models and traditional calculus-based methods in tandem to make concepts easier to digest and apply in the real world. Each technique is introduced alongside a practical, solved example based on a commercial laser. Assuming some knowledge of the nature of light, emission of radiation, and basic atomic physics, the text:

  • Explains how to formulate an accurate gain threshold equation as well as determine small-signal gain
  • Discusses gain saturation and introduces a novel pass-by-pass model for rapid implementation of "what if?" scenarios
  • Outlines the calculus-based Rigrod approach in a simplified manner to aid in comprehension
  • Considers thermal effects on solid-state lasers and other lasers with new and efficient quasi-three-level materials
  • Demonstrates how the convolution method is used to predict the effect of temperature drift on a DPSS system
  • Describes the technique and technology of Q-switching and provides a simple model for predicting output power
  • Addresses non-linear optics and supplies a simple model for calculating optimal crystal length
  • Examines common laser systems, answering basic design questions and summarizing parameters
  • Includes downloadable Microsoft® Excel spreadsheets, allowing models to be customized for specific lasers

Don’t let the mathematical rigor of solutions get in the way of understanding the concepts. Laser Modeling: A Numerical Approach with Algebra and Calculus covers laser theory in an accessible way that can be applied immediately, and numerically, to real laser systems.


Product Details

ISBN-13: 9781138071995
Publisher: Taylor & Francis
Publication date: 03/29/2017
Edition description: Reprint
Pages: 274
Product dimensions: 6.12(w) x 9.19(h) x (d)

About the Author

Mark Steven Csele is a full-time professor at Niagara College, Welland, Ontario, Canada. A physicist and professional engineer, he has taught for over 20 years at levels ranging from two-year technician to four-year undergraduate. Currently, he teaches photonics at Niagara College, which features an array of dedicated laboratories hosting a variety of laser systems. He has authored a previous book on fundamental laser concepts as well as several articles in magazines and trade encyclopedias.

Table of Contents

Basic Laser Processes. Threshold Gain. Gain Saturation. Analytical Solutions. Thermal Issues. Generating Massive Inversions: Q-Switching. Non-Linear Optics. Common Lasers and Parameters.

From the B&N Reads Blog

Customer Reviews