Learning with Support Vector Machines
Support Vectors Machines have become a well established tool within machine learning. They work well in practice and have now been used across a wide range of applications from recognizing hand-written digits, to face identification, text categorisation, bioinformatics, and database marketing. In this book we give an introductory overview of this subject. We start with a simple Support Vector Machine for performing binary classification before considering multi-class classification and learning in the presence of noise. We show that this framework can be extended to many other scenarios such as prediction with real-valued outputs, novelty detection and the handling of complex output structures such as parse trees. Finally, we give an overview of the main types of kernels which are used in practice and how to learn and make predictions from multiple types of input data. Table of Contents: Support Vector Machines for Classification / Kernel-based Models / Learning with Kernels
1102786908
Learning with Support Vector Machines
Support Vectors Machines have become a well established tool within machine learning. They work well in practice and have now been used across a wide range of applications from recognizing hand-written digits, to face identification, text categorisation, bioinformatics, and database marketing. In this book we give an introductory overview of this subject. We start with a simple Support Vector Machine for performing binary classification before considering multi-class classification and learning in the presence of noise. We show that this framework can be extended to many other scenarios such as prediction with real-valued outputs, novelty detection and the handling of complex output structures such as parse trees. Finally, we give an overview of the main types of kernels which are used in practice and how to learn and make predictions from multiple types of input data. Table of Contents: Support Vector Machines for Classification / Kernel-based Models / Learning with Kernels
29.99 In Stock
Learning with Support Vector Machines

Learning with Support Vector Machines

by Colin Campbell, Yiming Ying
Learning with Support Vector Machines

Learning with Support Vector Machines

by Colin Campbell, Yiming Ying

Paperback

$29.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Support Vectors Machines have become a well established tool within machine learning. They work well in practice and have now been used across a wide range of applications from recognizing hand-written digits, to face identification, text categorisation, bioinformatics, and database marketing. In this book we give an introductory overview of this subject. We start with a simple Support Vector Machine for performing binary classification before considering multi-class classification and learning in the presence of noise. We show that this framework can be extended to many other scenarios such as prediction with real-valued outputs, novelty detection and the handling of complex output structures such as parse trees. Finally, we give an overview of the main types of kernels which are used in practice and how to learn and make predictions from multiple types of input data. Table of Contents: Support Vector Machines for Classification / Kernel-based Models / Learning with Kernels

Product Details

ISBN-13: 9783031004247
Publisher: Springer Nature Switzerland
Publication date: 02/10/2011
Series: Synthesis Lectures on Artificial Intelligence and Machine Learning
Pages: 83
Product dimensions: 7.52(w) x 9.25(h) x (d)

About the Author

Dr. Colin Campbell holds a BSc degree in physics from Imperial College, London, and a PhD in mathematics from King's College, London. He joined the Faculty of Engineering at the University of Bristol in 1990 where he is currently a Reader. His main interests are in machine learning and algorithm design. Current topics of interest include kernel-based methods, probabilistic graphical models and the application of machine learning techniques to medical decision support and bioinformatics. His research is supported by the EPSRC, Cancer Research UK, the MRC and PASCAL2. Dr. Yiming Ying received his BSc degree in mathematics from Zhejiang University (formally, Hangzhou University) in 1997 and his PhD degree in mathematics from Zhejiang University in 2002, Hangzhou, China. He is currently a Lecturer (Assistant Professor) in Computer Science in the College of Engineering, Mathematics and Physical Sciences at the University of Exeter, UK. His research interests include machine learning, pattern analysis, convex optimization, probabilistic graphical models and applications to bioinformatics and computer vision.

Table of Contents

Support Vector Machines for Classification.- Kernel-based Models.- Learning with Kernels.
From the B&N Reads Blog

Customer Reviews