Lectures on the Geometry of Poisson Manifolds

This book is addressed to graduate students and researchers in the fields of mathematics and physics who are interested in mathematical and theoretical physics, differential geometry, mechanics, quantization theories and quantum physics, quantum groups etc., and who are familiar with differentiable and symplectic manifolds. The aim of the book is to provide the reader with a monograph that enables him to study systematically basic and advanced material on the recently developed theory of Poisson manifolds, and that also offers ready access to bibliographical references for the continuation of his study. Until now, most of this material was dispersed in research papers published in many journals and languages. The main subjects treated are the Schouten-Nijenhuis bracket; the generalized Frobenius theorem; the basics of Poisson manifolds; Poisson calculus and cohomology; quantization; Poisson morphisms and reduction; realizations of Poisson manifolds by symplectic manifolds and by symplectic groupoids and Poisson-Lie groups. The book unifies terminology and notation. It also reports on some original developments stemming from the author's work, including new results on Poisson cohomology and geometric quantization, cofoliations and biinvariant Poisson structures on Lie groups.

1100345347
Lectures on the Geometry of Poisson Manifolds

This book is addressed to graduate students and researchers in the fields of mathematics and physics who are interested in mathematical and theoretical physics, differential geometry, mechanics, quantization theories and quantum physics, quantum groups etc., and who are familiar with differentiable and symplectic manifolds. The aim of the book is to provide the reader with a monograph that enables him to study systematically basic and advanced material on the recently developed theory of Poisson manifolds, and that also offers ready access to bibliographical references for the continuation of his study. Until now, most of this material was dispersed in research papers published in many journals and languages. The main subjects treated are the Schouten-Nijenhuis bracket; the generalized Frobenius theorem; the basics of Poisson manifolds; Poisson calculus and cohomology; quantization; Poisson morphisms and reduction; realizations of Poisson manifolds by symplectic manifolds and by symplectic groupoids and Poisson-Lie groups. The book unifies terminology and notation. It also reports on some original developments stemming from the author's work, including new results on Poisson cohomology and geometric quantization, cofoliations and biinvariant Poisson structures on Lie groups.

119.99 In Stock
Lectures on the Geometry of Poisson Manifolds

Lectures on the Geometry of Poisson Manifolds

by Izu Vaisman
Lectures on the Geometry of Poisson Manifolds

Lectures on the Geometry of Poisson Manifolds

by Izu Vaisman

Hardcover(1994)

$119.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This book is addressed to graduate students and researchers in the fields of mathematics and physics who are interested in mathematical and theoretical physics, differential geometry, mechanics, quantization theories and quantum physics, quantum groups etc., and who are familiar with differentiable and symplectic manifolds. The aim of the book is to provide the reader with a monograph that enables him to study systematically basic and advanced material on the recently developed theory of Poisson manifolds, and that also offers ready access to bibliographical references for the continuation of his study. Until now, most of this material was dispersed in research papers published in many journals and languages. The main subjects treated are the Schouten-Nijenhuis bracket; the generalized Frobenius theorem; the basics of Poisson manifolds; Poisson calculus and cohomology; quantization; Poisson morphisms and reduction; realizations of Poisson manifolds by symplectic manifolds and by symplectic groupoids and Poisson-Lie groups. The book unifies terminology and notation. It also reports on some original developments stemming from the author's work, including new results on Poisson cohomology and geometric quantization, cofoliations and biinvariant Poisson structures on Lie groups.


Product Details

ISBN-13: 9783764350161
Publisher: Birkh�user Basel
Publication date: 03/01/1994
Series: Progress in Mathematics , #118
Edition description: 1994
Pages: 206
Product dimensions: 6.10(w) x 9.25(h) x 0.24(d)

Table of Contents

0 Introduction.- 1 The Poisson bivector and the Schouten-Nijenhuis bracket.- 1.1 The Poisson bivector.- 1.2 The Schouten-Nijenhuis bracket.- 1.3 Coordinate expressions.- 1.4 The Koszul formula and applications.- 1.5 Miscellanea.- 2 The symplectic foliation of a Poisson manifold.- 2.1 General distributions and foliations.- 2.2 Involutivity and integrability.- 2.3 The case of Poisson manifolds.- 3 Examples of Poisson manifolds.- 3.1 Structures on—n. Lie-Poisson structures.- 3.2 Dirac brackets.- 3.3 Further examples.- 4 Poisson calculus.- 4.1 The bracket of 1-forms.- 4.2 The contravariant exterior differentiations.- 4.3 The regular case.- 4.4 Cofoliations.- 4.5 Contravariant derivatives on vector bundles.- 4.6 More brackets.- 5 Poisson cohomology.- 5.1 Definition and general properties.- 5.2 Straightforward and inductive computations.- 5.3 The spectral sequence of Poisson cohomology.- 5.4 Poisson homology.- 6 An introduction to quantization.- 6.1 Prequantization.- 6.2 Quantization.- 6.3 Prequantization representations.- 6.4 Deformation quantization.- 7 Poisson morphisms, coinduced structures, reduction.- 7.1 Properties of Poisson mappings.- 7.2 Reduction of Poisson structures.- 7.3 Group actions and momenta.- 7.4 Group actions and reduction.- 8 Symplectic realizations of Poisson manifolds.- 8.1 Local symplectic realizations.- 8.2 Dual pairs of Poisson manifolds.- 8.3 Isotropic realizations.- 8.4 Isotropic realizations and nets.- 9 Realizations of Poisson manifolds by symplectic groupoids.- 9.1 Realizations of Lie-Poisson structures.- 9.2 The Lie groupoid and symplectic structures of T*G.- 9.3 General symplectic groupoids.- 9.4 Lie algebroids and the integrability of Poisson manifolds.- 9.5 Further integrability results.- 10 Poisson-Lie groups.- 10.1 Poisson-Lie andbiinvariant structures on Lie groups.- 10.2 Characteristic properties of Poisson-Lie groups.- 10.3 The Lie algebra of a Poisson-Lie group.- 10.4 The Yang-Baxter equations.- 10.5 Manin triples.- 10.6 Actions and dressing transformations.- References.
From the B&N Reads Blog

Customer Reviews