Longitude: The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of His Time
The dramatic human story of an epic scientific quest and of one man's forty-year obsession to find a solution to the thorniest scientific dilemma of the day—"the longitude problem."

Anyone alive in the eighteenth century would have known that "the longitude problem" was the thorniest scientific dilemma of the day-and had been for centuries. Lacking the ability to measure their longitude, sailors throughout the great ages of exploration had been literally lost at sea as soon as they lost sight of land. Thousands of lives and the increasing fortunes of nations hung on a resolution. One man, John Harrison, in complete opposition to the scientific community, dared to imagine a mechanical solution-a clock that would keep precise time at sea, something no clock had ever been able to do on land.

Longitude is the dramatic human story of an epic scientific quest and of Harrison's forty-year obsession with building his perfect timekeeper, known today as the chronometer. Full of heroism and chicanery, it is also a fascinating brief history of astronomy, navigation, and clockmaking, and opens a new window on our world.

1001953617
Longitude: The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of His Time
The dramatic human story of an epic scientific quest and of one man's forty-year obsession to find a solution to the thorniest scientific dilemma of the day—"the longitude problem."

Anyone alive in the eighteenth century would have known that "the longitude problem" was the thorniest scientific dilemma of the day-and had been for centuries. Lacking the ability to measure their longitude, sailors throughout the great ages of exploration had been literally lost at sea as soon as they lost sight of land. Thousands of lives and the increasing fortunes of nations hung on a resolution. One man, John Harrison, in complete opposition to the scientific community, dared to imagine a mechanical solution-a clock that would keep precise time at sea, something no clock had ever been able to do on land.

Longitude is the dramatic human story of an epic scientific quest and of Harrison's forty-year obsession with building his perfect timekeeper, known today as the chronometer. Full of heroism and chicanery, it is also a fascinating brief history of astronomy, navigation, and clockmaking, and opens a new window on our world.

17.0 In Stock
Longitude: The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of His Time

Longitude: The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of His Time

by Dava Sobel
Longitude: The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of His Time

Longitude: The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of His Time

by Dava Sobel

Paperback(First Edition)

$17.00 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

The dramatic human story of an epic scientific quest and of one man's forty-year obsession to find a solution to the thorniest scientific dilemma of the day—"the longitude problem."

Anyone alive in the eighteenth century would have known that "the longitude problem" was the thorniest scientific dilemma of the day-and had been for centuries. Lacking the ability to measure their longitude, sailors throughout the great ages of exploration had been literally lost at sea as soon as they lost sight of land. Thousands of lives and the increasing fortunes of nations hung on a resolution. One man, John Harrison, in complete opposition to the scientific community, dared to imagine a mechanical solution-a clock that would keep precise time at sea, something no clock had ever been able to do on land.

Longitude is the dramatic human story of an epic scientific quest and of Harrison's forty-year obsession with building his perfect timekeeper, known today as the chronometer. Full of heroism and chicanery, it is also a fascinating brief history of astronomy, navigation, and clockmaking, and opens a new window on our world.


Product Details

ISBN-13: 9780802715296
Publisher: Bloomsbury USA
Publication date: 11/05/2007
Edition description: First Edition
Pages: 208
Sales rank: 39,706
Product dimensions: 6.62(w) x 7.44(h) x 0.61(d)
Lexile: 1310L (what's this?)
Age Range: 15 - 18 Years

About the Author

About The Author
Dava Sobel (born June 15, 1947) is the author of Longitude, Galileo's Daughter, The Planets, and A More Perfect Heaven: How Copernicus Revolutionized the Cosmos. A former staff science reporter for The New York Times, she has also written for numerous magazines, including Discover, Harvard Magazine, Smithsonian, and The New Yorker.

Her most unforgettable assignment at the Times required her to live 25 days as a research subject in the chronophysiology lab at Montefiore Hospital, where the boarded-up windows and specially trained technicians kept her from knowing whether it was day outside or night.

Her work has won recognition from the National Science Board, which gave her its 2001 Individual Public Service Award "for fostering awareness of science and technology among broad segments of the general public." She also received the 2004 Harrison Medal from the Worshipful Company of Clockmakers in England and the 2008 Klumpke-Roberts Award from the Astronomical Society of the Pacific for "increasing the public understanding and appreciation of astronomy."

A 1964 graduate of the Bronx High School of Science, she has taught several seminars in science writing at the university level, and held a two-year residency at Smith College in fall 2013.

Read an Excerpt

CHAPTER ONE

Imaginary Lines

When I'm playful Is use the meridians of longitude and parallels of latitude for a seine, and drag the Atlantic Ocean for whales.

--MARK TWAIN, Life on the Mississippi

Once on a Wednesday excursion when I was a little girl, my father bought me a beaded wire ball that I loved. At a touch, I could collapse the toy into a flat coil between my palms, or pop it open to make a hollow sphere. Rounded out, it resembled a tiny Earth, because its hinged wires traced the same pattern of intersecting circles that I had seen on the globe in my schoolroom--the thin black lines of latitude and longitude. The few colored beads slid along the wire paths haphazardly, like ships on the high seas.

My father strode up Fifth Avenue to Rockefeller Center with me on his shoulders, and we stopped to stare at the statue of Atlas, carrying Heaven and Earth on his.

The bronze orb that Atlas held aloft, like the wire toy in my hands, was a see-through world, defined by imaginary lines. The Equator. The Ecliptic. The Tropic of Cancer. The Tropic of Capricorn. The Arctic Circle. The prime meridian. Even then I could recognize, in the graph-paper grid imposed on the globe, a powerful symbol of all the real lands and waters on the planet.

Today, the latitude and longitude lines govern with more authority than I could have imagined forty-odd years ago, for they stay fixed as the world changes its configuration underneath them--with continents adrift across a widening sea, and national boundaries repeatedly redrawn by war or peace.

As a child, I learned the trick for remembering the difference between latitude and longitude. The latitude lines, the parallels, really do stay parallel to each other as they girdle the globe from the Equator to the poles in a series of shrinking concentric rings. The meridians of longitude go the other way: They loop from the North Pole to the South and back again in great circles of the same size, so they all converge at the ends of the Earth.

Lines of latitude and longitude began crisscrossing our worldview in ancient times, at least three centuries before the birth of Christ. By A.D. 150, the cartographer and astronomer Ptolemy had plotted them on the twenty-seven maps of his first world atlas. Also for this landmark volume, Ptolemy listed all the place names in an index, in alphabetical order, with the latitude and longitude of each--as well as he could gauge them from travelers' reports. Ptolemy himself had only an armchair appreciation of the wider world. A common misconception of his day held that anyone living below the Equator would melt into deformity from the horrible heat.

The Equator marked the zero-degree parallel of latitude for Ptolemy. He did not choose it arbitrarily but took it on higher authority from his predecessors, who had derived it from nature while observing the motions of the heavenly bodies. The sun, moon, and planets pass almost directly overhead at the Equator. Likewise the Tropic of Cancer and the Tropic of Capricorn, two other famous parallels' assume their positions at the sun's command. They mark the northern and southern boundaries of the sun's apparent motion over the course of the year.

Ptolemy was free, however, to lay his prime meridian, the zero-degree longitude line, wherever he liked. He chose to run it through the Fortunate Islands (now called the Canary & Madeira Islands) off the northwest coast of Africa. Later mapmakers moved the prime meridian to the Azores and to the Cape Verde Islands, as well as to Rome, Copenhagen, Jerusalem, St. Petersburg, Pisa, Paris, and Philadelphia, among other places, before it settled down at last in London. As the world turns, any line drawn from pole to pole may serve as well as any other for a starting line of reference. The placement of the prime meridian is a purely political decision.

Here lies the real, hard-core difference between latitude and longitude--beyond the superficial difference in line direction that any child can see: The zero-degree parallel of latitude is fixed by the laws of nature, while the zero-degree meridian of longitude shifts like the sands of time. This difference makes finding latitude child's play, and turns the determination of longitude, especially at sea, into an adult dilemma-one that stumped the wisest minds of the world for the better part of human history.

Any sailor worth his salt can gauge his latitude well enough by the length of the day, or by the height of the sun or known guide stars above the horizon. Christopher Columbus followed a straight path across the Atlantic when he "sailed the parallel" on his 1492 journey, and the technique would doubtless have carried him to the Indies had not the Americas intervened.

The measurement of longitude meridians, in comparison, is tempered by time. To learn one's longitude at sea, one needs to know what time it is aboard ship and also the time at the home port or another place of known longitude--at that very same moment. The two clock times enable the navigator to convert the hour difference into a geographical separation. Since the Earth takes twenty-four hours to complete one full revolution of three hundred sixty degrees, one hour marks one twenty-fourth of a spin, or fifteen degrees. And so each hour's time difference between the ship and the starting point marks a progress of fifteen degrees of longitude to the east or west. Every day at sea, when the navigator resets his ship's clock to local noon when the sun reaches its highest point in the sky, and then consults the home-port clock, every hour's discrepancy between them translates into another fifteen degrees of longitude.

Those same fifteen degrees of longitude also correspond to a distance traveled. At the Equator, where the girth of the Earth is greatest, fifteen degrees stretch fully one thousand miles. North or south of that line, however, the mileage value of each degree decreases. One degree of longitude equals four minutes of time the world over, but in terms of distance, one degree shrinks from sixty-eight miles at the Equator to virtually nothing at the poles.

Precise knowledge of the hour in two different places at once--a longitude prerequisite so easily accessible today from any pair of cheap wristwatches--was utterly unattainable up to and including the era of pendulum clocks. On the deck of a rolling ship, such clocks would slow down, or speed up, or stop running altogether. Normal changes in temperature encountered en route from a cold country of origin to a tropical trade zone thinned or thickened a clock's lubricating oil and made its metal parts expand or contract with equally disastrous results. A rise or fall in barometric pressure, or the subtle variations in the Earth's gravity from one latitude to another, could also cause a clock to gain or lose time.

For lack of a practical method of determining longitude, every great captain in the Age of Exploration became lost at sea despite the best available charts and compasses. From Vasco da Gama to Vasco Nunez de Balboa, from Ferdinand Magellan to Sir Francis Drake--they all got where they were going willy-nilly, by forces attributed to good luck or the grace of God.

As more and more sailing vessels set out to conquer or explore new territories, to wage war, or to ferry gold and commodities between foreign lands, the wealth of nations floated upon the oceans. And still no ship owned a reliable means for establishing her whereabouts. In consequence, untold numbers of sailors died when their destinations suddenly loomed out of the sea and took them by surprise. In a single such accident, on October 22, 1707, at the Scilly Isles near the southwestern tip of England, four homebound British warships ran aground and nearly two thousand men lost their lives.

The active quest for a solution to the problem of longitude persisted over four centuries and across the whole continent of Europe. Most crowned heads of state eventually played a part in the longitude story, notably King George III of England and King Louis XIV of France. Seafaring men such as Captain William Bligh of the Bounty and the great circumnavigator Captain James Cook, who made three long voyages of exploration and experimentation before his violent death in Hawaii, took the more promising methods to sea to test their accuracy and practicability.

Renowned astronomers approached the longitude challenge by appealing to the clockwork universe: Galileo Galilei, Jean Dominique Cassini, Christiaan Huygens, Sir Isaac Newton, and Edmond Halley, of comet fame, all entreated the moon and stars for help. Palatial observatories were founded at Paris, London, and Berlin for the express purpose of determining longitude by the heavens. Meanwhile, lesser minds devised schemes that depended on the yelps of wounded dogs, or the cannon blasts of signal ships strategically anchored--somehow--on the open ocean.

In the course of their struggle to find longitude, scientists struck upon other discoveries that changed their view of the universe. These include the first accurate determinations of the weight of the Earth, the distance to the stars, and the speed of light.

As time passed and no method proved successful, the search for a solution to the longitude problem assumed legendary proportions, on a par with discovering the Fountain of Youth, the secret of perpetual motion, or the formula for transforming lead into gold. The governments of the great maritime nations--including Spain, the Netherlands, and certain city-states of Italy--periodically roiled the fervor by offering jackpot purses for a workable method. The British Parliament, in its famed Longitude Act of 1714, set the highest bounty of all, naming a prize equal to a king's ransom (several million dollars in today's currency) for a "Practicable and Useful" means of determining longitude.

English clockmaker John Harrison, a mechanical genius who pioneered the science of portable precision timekeeping, devoted his life to this quest. He accomplished what Newton had feared was impossible: He invented a clock that would carry the true time from the home port, like an eternal flame, to any remote corner of the world.

Harrison, a man of simple birth and high intelligence, crossed swords with the leading lights of his day. He made a special enemy of the Reverend Nevil Maskelyne, the fifth astronomer royal, who contested his claim to the coveted prize money, and whose tactics at certain junctures can only be described as foul play.

With no formal education or apprenticeship to any watchmaker, Harrison nevertheless constructed a series of virtually friction-free clocks that required no lubrication and no cleaning, that were made from materials impervious to rust, and that kept their moving parts perfectly balanced in relation to one another, regardless of how the world pitched or tossed about them. He did away with the pendulum, and he combined different metals inside his works in such a way that when one component expanded or contracted with changes in temperature, the other counteracted the change and kept the clock's rate constant.

His every success, however, was parried by members of the scientific elite, who distrusted Harrison's magic box. The commissioners charged with awarding the longitude prize--Nevil Maskelyne among them--changed the contest rules whenever they saw fit, so as to favor the chances of astronomers over the likes of Harrison and his fellow "mechanics." But the utility and accuracy of Harrison's approach triumphed in the end. His followers shepherded Harrison's intricate, exquisite invention through the design modifications that enabled it to be mass produced and enjoy wide use.

An aged, exhausted Harrison, taken under the wing of King George III, ultimately claimed his rightful monetary reward in 1773-after forty struggling years of political intrigue, international warfare, academic backbiting, scientific revolution, and economic upheaval.

All these threads, and more, entwine in the lines of longitude. To unravel them now--to retrace their story in an age when a network of geostationary satellites can nail down a ship's position within a few feet in just a moment or two--is to see the globe anew.

Table of Contents

Acknowledgmentsvii
1.Imaginary Lines1
2.The Sea Before Time11
3.Adrift in a Clockwork Universe21
4.Time in a Bottle34
5.Powder of Sympathy41
6.The Prize51
7.Cogmaker's Journal61
8.The Grasshopper Goes to Sea74
9.Hands on Heaven's Clock88
10.The Diamond Timekeeper100
11.Trial by Fire and Water111
12.A Tale of Two Portraits126
13.The Second Voyage of Captain James Cook138
14.The Mass Production of Genius152
15.In the Meridian Courtyard165
Sources177
Index181

Interviews

Barnes & Noble: You have established yourself as a premier science writer, first for The New York Times and then with Longitude and Galileo's Daughter. What draws you to historical science?
Dava Sobel: I like looking back to times before scientific mysteries were solved and seeing what life was like without those solutions. One needs a distance of about a century to do that. Imagine living when all thinking about the solar system was turned inside out, and people had to accept the impossible notion that the solid ground beneath them was actually spinning and speeding through space.

B&N: Determining longitude was certainly a huge scientific challenge. How did this subject come to your attention?
DS: The problem of determining longitude came to my attention at a Longitude Symposium held at Harvard University. The symposium presented excellent speakers, each one telling another aspect of the historic quest to solve this important problem. Naturally they touched on economics, navigation, astronomy, mapmaking, timekeeping, and politics, but the phenomenal human interest story of John Harrison intrigued me. I literally sat with my chin on the floor for three days, then went home and wrote my article in great excitement. Harvard Magazine published the piece as a cover story, with Harrison's first sea clock on the cover. That image captured the attention of George Gibson, a Harvard alumnus at Walker. He called me the next day to ask if I could expand the article into a book.

B&N: Many current popular science authors are comparing their work to Longitude. Does your commercial success surprise you?
DS: It astounds me. The last thing one expects as a writer is to make money. People used to laugh or act embarrassed when I said the subject of my work in progress was longitude. My son, then about ten, asked, "Do you really think anyone will read this?" And I answered, "No, but it doesn't matter. I'm enjoying writing it, and George Gibson at Walker will publish it beautifully, and we'll always be proud of the work we did." But instead, the book became a publishing icon, gave Walker its first New York Times bestseller, and changed my life.

B&N: It must have been exciting, and a bit scary, to have Longitude adapted for the screen. How much creative control did you have?
DS: The experience was exciting and not a bit scary since the producers had the good sense not to involve me in the writing of the screenplay. I wouldn't have the first idea how to make a movie. I did get to see the script at various stages and always felt I could have objected had I found anything objectionable about it. I love how the director plucked Commander Gould (the part played by Jeremy Irons) from the final few pages of my book and made him a second protagonist, so that the film flips back and forth between the stories of Harrison in the 18th century and Gould in the early 20th -- two men obsessed and united by the same machines. Gould's terribly dramatic life -- including war service that produced a nervous breakdown and a lurid divorce -- makes him a naturally cinematic figure, compared to Harrison. He was a dogged workaholic who remained locked in his workshop by choice.

B&N: Galileo's Daughter has also been a phenomenal success. What did you find so compelling about the title character, Celeste?
DS: Suor Maria Celeste struck me as a compelling character first by her very existence. Who knew Galileo had a daughter? Then she surprised me by being a nun, when I'd always considered her father a great enemy of the Catholic church. Later she thrilled me with the beauty of her writing and the depth of her devotion to God and her own father. I found her a powerful force of goodness.

B&N: Will Galileo's Daughter be a movie anytime soon?
DS: Galileo's Daughter will be a movie, though not terribly soon. Granada Films, the producers of Longitude, has bought the rights but has not named a director and screenwriter. And, like Longitude, Galileo's Daughter will also be made into a NOVA documentary.

B&N: Can you tell us what you.re working on now?
DS: I'm at work now on a book about the planets of the solar system. I tried to write something on this subject several years ago, but now I'm approaching it entirely afresh.

B&N: Do you have a favorite book or author? What are you reading now?
DS: I have many favorite books and authors -- so many, in fact, that I hesitate to list any for fear of leaving out someone or offending a friend. I love true adventure stories, such as Alfred Lansing's Endurance, and I'm proud to have been an early supporter of Sebastian Junger's The Perfect Storm. I enjoy reading astronomy books, of course, and was a great fan of Carl Sagan's, having read all his books, from The Cosmic Connection to The Demon-Haunted World. I also like Fred Schaaf's little classic, The Starry Room, Alan Lightman's Einstein's Dreams, Tim Ferris's The Mind's Sky, and I especially loved Diane Ackerman's volume of scientific poetry called The Planets: A Cosmic Pastoral. Right now I'm reading (at last and with great pleasure) The Beak of the Finch, by Jonathan Weiner. I have a paperback edition that I carry about, to read on planes and trains. At home I'm still studying J. L. Heilbron's The Sun in the Church, which keeps me in the much beloved world of 17th-century astronomy. Also I have Thomas Hardy's Jude the Obscure as a book on tape in the car, which I "read" while driving.

From the B&N Reads Blog

Customer Reviews