Mathematics of Quantization and Quantum Fields

Mathematics of Quantization and Quantum Fields


View All Available Formats & Editions
Eligible for FREE SHIPPING
  • Want it by Tuesday, September 25?   Order by 12:00 PM Eastern and choose Expedited Shipping at checkout.


Mathematics of Quantization and Quantum Fields by Jan Derezinski, Christian Gerard

Unifying a range of topics that are currently scattered throughout the literature, this book offers a unique and definitive review of mathematical aspects of quantization and quantum field theory. The authors present both basic and more advanced topics of quantum field theory in a mathematically consistent way, focusing on canonical commutation and anti-commutation relations. They begin with a discussion of the mathematical structures underlying free bosonic or fermionic fields, like tensors, algebras, Fock spaces, and CCR and CAR representations (including their symplectic and orthogonal invariance). Applications of these topics to physical problems are discussed in later chapters. Although most of the book is devoted to free quantum fields, it also contains an exposition of two important aspects of interacting fields: diagrammatics and the Euclidean approach to constructive quantum field theory. With its in-depth coverage, this text is essential reading for graduate students and researchers in departments of mathematics and physics.

Product Details

ISBN-13: 9781107011113
Publisher: Cambridge University Press
Publication date: 02/28/2013
Series: Cambridge Monographs on Mathematical Physics
Pages: 688
Product dimensions: 6.85(w) x 9.72(h) x 1.46(d)

About the Author

Jan Derezi ski is a Professor in the Faculty of Physics at the University of Warsaw. His research interests cover various aspects of quantum physics and quantum field theory, especially from the rigorous point of view.

Christian G�rard is a Professor in the D�partement de Math�matiques at the Universit� Paris-Sud. He was previously Directeur de Recherche at the CNRS (Centre National de la Recherche Scientifique). His research interests are the spectral and scattering theory in non-relativistic quantum mechanics and in quantum field theory.

Table of Contents

Preface; 1. Vector spaces; 2. Operators in Hilbert spaces; 3. Tensor algebras; 4. Analysis in L2(Rd); 5. Measures; 6. Algebras; 7. Anti-symmetric calculus; 8. Canonical commutation relations; 9. CCR on Fock spaces; 10. Symplectic invariance of CCR in finite dimensions; 11. Symplectic invariance of the CCR on Fock spaces; 12. Canonical anti-commutation relations; 13. CAR on Fock spaces; 14. Orthogonal invariance of CAR algebras; 15. Clifford relations; 16. Orthogonal invariance of the CAR on Fock spaces; 17. Quasi-free states; 18. Dynamics of quantum fields; 19. Quantum fields on space-time; 20. Diagrammatics; 21. Euclidean approach for bosons; 22. Interacting bosonic fields; Subject index; Symbols index.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews