Maximum Penalized Likelihood Estimation: Volume I: Density Estimation
This book is intended for graduate students in statistics and industrial mathematics, as well as researchers and practitioners in the field. We cover both theory and practice of nonparametric estimation. The text is novel in its use of maximum penalized likelihood estimation, and the theory of convex minimization problems (fully developed in the text) to obtain convergence rates. We also use (and develop from an elementary view point) discrete parameter submartingales and exponential inequalities. A substantial effort has been made to discuss computational details, and to include simulation studies and analyses of some classical data sets using fully automatic (data driven) procedures. Some theoretical topics that appear in textbook form for the first time are definitive treatments of I.J. Good's roughness penalization, monotone and unimodal density estimation, asymptotic optimality of generalized cross validation for spline smoothing and analogous methods for ill-posed least squares problems, and convergence proofs of EM algorithms for random sampling problems.
1101305511
Maximum Penalized Likelihood Estimation: Volume I: Density Estimation
This book is intended for graduate students in statistics and industrial mathematics, as well as researchers and practitioners in the field. We cover both theory and practice of nonparametric estimation. The text is novel in its use of maximum penalized likelihood estimation, and the theory of convex minimization problems (fully developed in the text) to obtain convergence rates. We also use (and develop from an elementary view point) discrete parameter submartingales and exponential inequalities. A substantial effort has been made to discuss computational details, and to include simulation studies and analyses of some classical data sets using fully automatic (data driven) procedures. Some theoretical topics that appear in textbook form for the first time are definitive treatments of I.J. Good's roughness penalization, monotone and unimodal density estimation, asymptotic optimality of generalized cross validation for spline smoothing and analogous methods for ill-posed least squares problems, and convergence proofs of EM algorithms for random sampling problems.
219.99 In Stock
Maximum Penalized Likelihood Estimation: Volume I: Density Estimation

Maximum Penalized Likelihood Estimation: Volume I: Density Estimation

Maximum Penalized Likelihood Estimation: Volume I: Density Estimation

Maximum Penalized Likelihood Estimation: Volume I: Density Estimation

Paperback(Softcover reprint of hardcover 1st ed. 2001)

$219.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This book is intended for graduate students in statistics and industrial mathematics, as well as researchers and practitioners in the field. We cover both theory and practice of nonparametric estimation. The text is novel in its use of maximum penalized likelihood estimation, and the theory of convex minimization problems (fully developed in the text) to obtain convergence rates. We also use (and develop from an elementary view point) discrete parameter submartingales and exponential inequalities. A substantial effort has been made to discuss computational details, and to include simulation studies and analyses of some classical data sets using fully automatic (data driven) procedures. Some theoretical topics that appear in textbook form for the first time are definitive treatments of I.J. Good's roughness penalization, monotone and unimodal density estimation, asymptotic optimality of generalized cross validation for spline smoothing and analogous methods for ill-posed least squares problems, and convergence proofs of EM algorithms for random sampling problems.

Product Details

ISBN-13: 9781441929280
Publisher: Springer New York
Publication date: 12/03/2010
Series: Springer Series in Statistics
Edition description: Softcover reprint of hardcover 1st ed. 2001
Pages: 512
Product dimensions: 6.10(w) x 9.25(h) x 0.24(d)

Table of Contents

Parametric Maximum Likelihood Estimation.- Parametric Maximum Likelihood Estimation in Action.- Kernel Density Estimation.- Maximum Likelihood Density Estimation.- Monotone and Unimodal Densities.- Choosing the Smoothing Parameter.- Nonparametric Density Estimation in Action.- Convex Minimization in Finite Dimensional Spaces.- Convex Minimization in Infinite Dimensional Spaces.- Convexity in Action.
From the B&N Reads Blog

Customer Reviews