Metaheuristic Procedures for Training Neural Networks
Metaheuristic Procedures For Training Neural Networks provides successful implementations of metaheuristic methods for neural network training. Moreover, the basic principles and fundamental ideas given in the book will allow the readers to create successful training methods on their own. Apart from Chapter 1, which reviews classical training methods, the chapters are divided into three main categories. The first one is devoted to local search based methods, including Simulated Annealing, Tabu Search, and Variable Neighborhood Search. The second part of the book presents population based methods, such as Estimation Distribution algorithms, Scatter Search, and Genetic Algorithms. The third part covers other advanced techniques, such as Ant Colony Optimization, Co-evolutionary methods, GRASP, and Memetic algorithms. Overall, the book's objective is engineered to provide a broad coverage of the concepts, methods, and tools of this important area of ANNs within the realm of continuous optimization.

1101515702
Metaheuristic Procedures for Training Neural Networks
Metaheuristic Procedures For Training Neural Networks provides successful implementations of metaheuristic methods for neural network training. Moreover, the basic principles and fundamental ideas given in the book will allow the readers to create successful training methods on their own. Apart from Chapter 1, which reviews classical training methods, the chapters are divided into three main categories. The first one is devoted to local search based methods, including Simulated Annealing, Tabu Search, and Variable Neighborhood Search. The second part of the book presents population based methods, such as Estimation Distribution algorithms, Scatter Search, and Genetic Algorithms. The third part covers other advanced techniques, such as Ant Colony Optimization, Co-evolutionary methods, GRASP, and Memetic algorithms. Overall, the book's objective is engineered to provide a broad coverage of the concepts, methods, and tools of this important area of ANNs within the realm of continuous optimization.

159.99 In Stock
Metaheuristic Procedures for Training Neural Networks

Metaheuristic Procedures for Training Neural Networks

Metaheuristic Procedures for Training Neural Networks

Metaheuristic Procedures for Training Neural Networks

Paperback(Softcover reprint of hardcover 1st ed. 2006)

$159.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Metaheuristic Procedures For Training Neural Networks provides successful implementations of metaheuristic methods for neural network training. Moreover, the basic principles and fundamental ideas given in the book will allow the readers to create successful training methods on their own. Apart from Chapter 1, which reviews classical training methods, the chapters are divided into three main categories. The first one is devoted to local search based methods, including Simulated Annealing, Tabu Search, and Variable Neighborhood Search. The second part of the book presents population based methods, such as Estimation Distribution algorithms, Scatter Search, and Genetic Algorithms. The third part covers other advanced techniques, such as Ant Colony Optimization, Co-evolutionary methods, GRASP, and Memetic algorithms. Overall, the book's objective is engineered to provide a broad coverage of the concepts, methods, and tools of this important area of ANNs within the realm of continuous optimization.


Product Details

ISBN-13: 9781441941282
Publisher: Springer US
Publication date: 11/19/2010
Series: Operations Research/Computer Science Interfaces Series , #35
Edition description: Softcover reprint of hardcover 1st ed. 2006
Pages: 252
Product dimensions: 6.10(w) x 9.25(h) x 0.02(d)

Table of Contents

Classical Training Methods.- Local Search Based Methods.- Simulated Annealing.- Tabu Search.- Variable Neighbourhood Search.- Population Based Methods.- Estimation of Distribution Algorithms.- Genetic Algorithms.- Scatter Search.- Other Advanced Methods.- Ant Colony Optimization.- Cooperative Coevolutionary Methods.- Greedy Randomized Adaptive Search Procedures.- Memetic Algorithms.
From the B&N Reads Blog

Customer Reviews