Microstructure-Property Optimization in Metallic Glasses

Microstructure-Property Optimization in Metallic Glasses

by Baran Sarac

Paperback(Softcover reprint of the original 1st ed. 2015)

$129.99
View All Available Formats & Editions
Want it by Tuesday, November 20 Order now and choose Expedited Shipping during checkout.

Product Details

ISBN-13: 9783319365381
Publisher: Springer International Publishing
Publication date: 11/18/2016
Series: Springer Theses
Edition description: Softcover reprint of the original 1st ed. 2015
Pages: 89
Product dimensions: 6.10(w) x 9.25(h) x 0.01(d)

About the Author

Dr. Baran Sarac received his B.S. degree in metallurgical and materials engineering and mechanical engineering from Middle East Technical University, Ankara, Turkey. He has completed his masters and doctorate degree in the Department of Mechanical Engineering and Materials Science at Yale University, New Haven, CT, under the mentorship of Prof. Jan Schroers. He worked successively as a postdoctorate researcher in Helmholtz Zentrum Geesthacht for one year, and has recently embarked on his new position at Leibniz Institute, IFW Dresden with the same title on mechanical and functional characterization of smart alloy systems. His other research interests include structural design, thermoplastic forming, in-situ testing and morphological characterization of advanced cellular structures, as well as numerical simulations of superplastic materials via finite element analysis.

Through his studies at Yale University, Dr. Sarac has been entitled to several esteemed awards, including 2013 Yale University Harding Bliss Prize owing to his contributions to further the intellectual life of the Yale School of Engineering & Applied Science, Pierre W. Hoge fellowship (between 2008-2009), and 2012 Materials Research Society Fall Best Poster Award. His publications have appeared in peer reviewed international journals such as Nature Communications, Advanced Functional Materials, Acta Materialia, Materials Letters, Scripta Materialia, and Journal of Microelectromechanical systems (IEEE), where he was concomitantly involved in federal research projects of DARPA and US Department of Energy.

Table of Contents

1.General Introduction 1.1 Motivation and Scope of Complex Materials 1.2 An Overview of Metallic Glasses 1.3 Processing of Metallic Glasses 1.4 Mechanical Property Enhancement in MG Composites 1.5 References 2. Fabrication Methods of MG Artificial Microstructures 2.1 Metallic Glass Alloy Synthesis 2.2 Silicon Mold Fabrication 2.3 Fabrication Methods of Artificial Microstructures 2.4 Conclusions 2.5 References 3. Structural Characterization of Metallic Glasses 3.1 Formability Test 3.2 Thermal Analysis 3.3 Structural Analysis 3.4 Bend Test 3.4 Conclusions 3.5 References 4. Artificial Microstructure Approach 4.1 Objectives 4.2 Periodic Cellular Structures of Metallic Glasses 4.2.1 MG Cellular Structure Sample 4.2.2 In-Plane Compression Test 4.2.3 Euler Buckling Instability 4.2.4 Results and Discussion 4.2.4.1 Deformation Regions of MG Cellular Structures 4.2.4.2 Manipulation of Geometry 4.2.4.3 Cellular Structures of Different Materials 4.2.4.4 Energy Absorption Capacity 4.2.4.5 Microstructural Optimization 4.2.4.6 Embrittlement of MGs 4.2.4.7 Comparison with Numerical Simulations 4.2.4.8 Mechanical Characterization under Uniaxial Tension 4.2.4.9 Mechanical Characterization at Different Orientations 4.2.5 General Findings & Conclusions 4.3 Toughening Mechanisms in Metallic Glasses 4.3.1 Uniaxial Tensile Test 4.3.1.1 Effect of Pore Size 4.3.1.2 Effect of Morphology 4.3.1.3 Effect of Pore Spacing 4.3.1.4 Effect of Pore Shape 4.3.1.5 Effect of Material Type 4.3.1.6 Effect of Pore Number 4.3.1.7 Effect of Electroplating 4.3.1.8 Microscopic Analysis of the Deformation Mechanism 4.3.1.9 Mechanical Property Optimization through d/s 4.3.1.10 Comparison with Numerical and Empirical Models 4.3.1.11 Effect of Isothermal Annealing on Mechanical Properties 4.3.2 Investigation of MG Composites Using FEM Analysis 4.3.3 General Findings & Conclusions 4.4 References 5. General Conclusions and Outlook 5.1 General Conclusions 116 5.2 Push the Limit: 3D Metallic Glass Structures 5.3 Multiple Material Artificial Microstructures 5.4 Non-Periodic Cellular Structures & Flaw Tolerance 5.5 Algorithmic Topological Optimization 5.6 Fracture Toughness in MG Heterostructures 5.7 Other Application Fields of MG Heterostructures 5.8 References.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews