Mixed Finite Element Methods and Applications
Non-standard finite element methods, in particular mixed methods, are central to many applications. In this text the authors, Boffi, Brezzi and Fortin present a general framework, starting with a finite dimensional presentation, then moving on to formulation in Hilbert spaces and finally considering approximations, including stabilized methods and eigenvalue problems. This book also provides an introduction to standard finite element approximations, followed by the construction of elements for the approximation of mixed formulations in H(div) and H(curl). The general theory is applied to some classical examples: Dirichlet's problem, Stokes' problem, plate problems, elasticity and electromagnetism.

1114269612
Mixed Finite Element Methods and Applications
Non-standard finite element methods, in particular mixed methods, are central to many applications. In this text the authors, Boffi, Brezzi and Fortin present a general framework, starting with a finite dimensional presentation, then moving on to formulation in Hilbert spaces and finally considering approximations, including stabilized methods and eigenvalue problems. This book also provides an introduction to standard finite element approximations, followed by the construction of elements for the approximation of mixed formulations in H(div) and H(curl). The general theory is applied to some classical examples: Dirichlet's problem, Stokes' problem, plate problems, elasticity and electromagnetism.

199.99 Out Of Stock
Mixed Finite Element Methods and Applications

Mixed Finite Element Methods and Applications

Mixed Finite Element Methods and Applications

Mixed Finite Element Methods and Applications

Hardcover(2013)

$199.99 
  • SHIP THIS ITEM
    Temporarily Out of Stock Online
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Non-standard finite element methods, in particular mixed methods, are central to many applications. In this text the authors, Boffi, Brezzi and Fortin present a general framework, starting with a finite dimensional presentation, then moving on to formulation in Hilbert spaces and finally considering approximations, including stabilized methods and eigenvalue problems. This book also provides an introduction to standard finite element approximations, followed by the construction of elements for the approximation of mixed formulations in H(div) and H(curl). The general theory is applied to some classical examples: Dirichlet's problem, Stokes' problem, plate problems, elasticity and electromagnetism.


Product Details

ISBN-13: 9783642365188
Publisher: Springer Berlin Heidelberg
Publication date: 07/02/2013
Series: Springer Series in Computational Mathematics , #44
Edition description: 2013
Pages: 685
Product dimensions: 6.10(w) x 9.25(h) x 0.06(d)

About the Author

Franco Brezzi is Editor-in-Chief of the journal Numerische Mathematik and co-author of several Springer books, among others the classical book SSCM Vol. 15 "Mixed and Hybrid Finite Element Methods" with Michel Fortin.

Table of Contents

Preface.- Variational Formulations and Finite Element Methods.- Function Spaces and Finite Element Approximations.- Algebraic Aspects of Saddle Point Problems.- Saddle Point Problems in Hilbert spaces.- Approximation of Saddle Point Problems.- Complements: Stabilisation Methods, Eigenvalue Problems.- Mixed Methods for Elliptic Problems.- Incompressible Materials and Flow Problems.- Complements on Elasticity Problems.- Complements on Plate Problems.- Mixed Finite Elements for Electromagnetic Problems.- Index.

From the B&N Reads Blog

Customer Reviews