Modelling Distributed Systems
A distributed system is driven by separate components that are executed in parallel, and prools for such systems form a major aspect of system design in today’s world of wireless and mobile networking. Process algebras are languages for the description of elementary parallel systems and are used to study the behavioural properties of distributed systems, but they often lack the ability to handle data.

This textbook guides students through algebraic specification and verification of distributed systems, and some of the most prominent formal verification techniques. The author employs µCRL as the vehicle, a language developed to combine process algebra and abstract data types. Chapters 2 and 3 explain the basics of abstract data types and process algebra, and guide the reader through the syntax and semantics of µCRL; Chap. 4 examines abstraction from internal behaviour; Chap. 5 covers specifications of standard prools; Chap. 6 shows how to transform prool specifications into labelled transition systems; Chap. 7 explains algorithms on labelled transition systems; and Chap. 8 presents symbolic verification techniques; finally, the Appendix gives a brief overview of the µCRL toolset.

The book evolved from introductory courses on prool verification taught to undergraduate and graduate students of computer science, and the text is supported throughout with examples and exercises; full solutions are provided in an appendix, while exercise sheets, lab exercises, example specifications and lecturer slides will be available on the author's website. Researchers in the field can use the book as a broad overview of the state of the art in algebraic specification and verification of distributed systems on the basis of a modern verification tool.

1116791721
Modelling Distributed Systems
A distributed system is driven by separate components that are executed in parallel, and prools for such systems form a major aspect of system design in today’s world of wireless and mobile networking. Process algebras are languages for the description of elementary parallel systems and are used to study the behavioural properties of distributed systems, but they often lack the ability to handle data.

This textbook guides students through algebraic specification and verification of distributed systems, and some of the most prominent formal verification techniques. The author employs µCRL as the vehicle, a language developed to combine process algebra and abstract data types. Chapters 2 and 3 explain the basics of abstract data types and process algebra, and guide the reader through the syntax and semantics of µCRL; Chap. 4 examines abstraction from internal behaviour; Chap. 5 covers specifications of standard prools; Chap. 6 shows how to transform prool specifications into labelled transition systems; Chap. 7 explains algorithms on labelled transition systems; and Chap. 8 presents symbolic verification techniques; finally, the Appendix gives a brief overview of the µCRL toolset.

The book evolved from introductory courses on prool verification taught to undergraduate and graduate students of computer science, and the text is supported throughout with examples and exercises; full solutions are provided in an appendix, while exercise sheets, lab exercises, example specifications and lecturer slides will be available on the author's website. Researchers in the field can use the book as a broad overview of the state of the art in algebraic specification and verification of distributed systems on the basis of a modern verification tool.

54.99 In Stock
Modelling Distributed Systems

Modelling Distributed Systems

by Wan Fokkink
Modelling Distributed Systems

Modelling Distributed Systems

by Wan Fokkink

Paperback(Softcover reprint of hardcover 1st ed. 2007)

$54.99 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Related collections and offers


Overview

A distributed system is driven by separate components that are executed in parallel, and prools for such systems form a major aspect of system design in today’s world of wireless and mobile networking. Process algebras are languages for the description of elementary parallel systems and are used to study the behavioural properties of distributed systems, but they often lack the ability to handle data.

This textbook guides students through algebraic specification and verification of distributed systems, and some of the most prominent formal verification techniques. The author employs µCRL as the vehicle, a language developed to combine process algebra and abstract data types. Chapters 2 and 3 explain the basics of abstract data types and process algebra, and guide the reader through the syntax and semantics of µCRL; Chap. 4 examines abstraction from internal behaviour; Chap. 5 covers specifications of standard prools; Chap. 6 shows how to transform prool specifications into labelled transition systems; Chap. 7 explains algorithms on labelled transition systems; and Chap. 8 presents symbolic verification techniques; finally, the Appendix gives a brief overview of the µCRL toolset.

The book evolved from introductory courses on prool verification taught to undergraduate and graduate students of computer science, and the text is supported throughout with examples and exercises; full solutions are provided in an appendix, while exercise sheets, lab exercises, example specifications and lecturer slides will be available on the author's website. Researchers in the field can use the book as a broad overview of the state of the art in algebraic specification and verification of distributed systems on the basis of a modern verification tool.


Product Details

ISBN-13: 9783642093210
Publisher: Springer Berlin Heidelberg
Publication date: 11/19/2010
Series: Texts in Theoretical Computer Science. An EATCS Series
Edition description: Softcover reprint of hardcover 1st ed. 2007
Pages: 154
Product dimensions: 6.10(w) x 9.25(h) x 0.36(d)

Table of Contents

Abstract Data Types.- Process Algebra.- Hiding Internal Transitions.- Prool Specifications.- Linear Process Equations.- Verification Algorithms on State Spaces.- Symbolic Methods.
From the B&N Reads Blog

Customer Reviews