Modular Forms
For the most part, this book is the translation from Japanese of the earlier book written jointly by Koji Doi and the author who revised it substantially for the English edition. It sets out to provide the reader with the basic knowledge of elliptic modular forms necessary to understand the recent developments in number theory. The first part gives the general theory of modular groups, modular forms and Hecke operators, with emphasis on the Hecke-Weil theory of the relation between modular forms and Dirichlet series. The second part is on the unit groups of quaternion algebras, which are seldom dealt with in books. The so-called Eichler-Selberg trace formula of Hecke operators follows next and the explicit computable formula is given. In the last chapter, written for the English edition, Eisenstein series with parameter are discussed following the recent work of Shimura: Eisenstein series are likely to play a very important role in the future progress of number theory, and thischapter provides a good introduction to the topic.

1133677615
Modular Forms
For the most part, this book is the translation from Japanese of the earlier book written jointly by Koji Doi and the author who revised it substantially for the English edition. It sets out to provide the reader with the basic knowledge of elliptic modular forms necessary to understand the recent developments in number theory. The first part gives the general theory of modular groups, modular forms and Hecke operators, with emphasis on the Hecke-Weil theory of the relation between modular forms and Dirichlet series. The second part is on the unit groups of quaternion algebras, which are seldom dealt with in books. The so-called Eichler-Selberg trace formula of Hecke operators follows next and the explicit computable formula is given. In the last chapter, written for the English edition, Eisenstein series with parameter are discussed following the recent work of Shimura: Eisenstein series are likely to play a very important role in the future progress of number theory, and thischapter provides a good introduction to the topic.

159.99 In Stock

Paperback(1st ed. 1989)

$159.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

For the most part, this book is the translation from Japanese of the earlier book written jointly by Koji Doi and the author who revised it substantially for the English edition. It sets out to provide the reader with the basic knowledge of elliptic modular forms necessary to understand the recent developments in number theory. The first part gives the general theory of modular groups, modular forms and Hecke operators, with emphasis on the Hecke-Weil theory of the relation between modular forms and Dirichlet series. The second part is on the unit groups of quaternion algebras, which are seldom dealt with in books. The so-called Eichler-Selberg trace formula of Hecke operators follows next and the explicit computable formula is given. In the last chapter, written for the English edition, Eisenstein series with parameter are discussed following the recent work of Shimura: Eisenstein series are likely to play a very important role in the future progress of number theory, and thischapter provides a good introduction to the topic.


Product Details

ISBN-13: 9783662221884
Publisher: Springer Berlin Heidelberg
Publication date: 07/18/2013
Series: Springer Monographs in Mathematics
Edition description: 1st ed. 1989
Pages: 338
Product dimensions: 5.98(w) x 9.02(h) x (d)

Table of Contents

The Upper Half Plane and Fuchsian Groups.- Automorphic Forms.- L-Functions.- Modular Groups and Modular Forms.- Unit Groups of Quaternion Algebras.- Traces of Hecke Operators.- Eisenstein Series.
From the B&N Reads Blog

Customer Reviews