Paperback(Softcover reprint of the original 1st ed. 1980)

$149.99
Use Standard Shipping. For guaranteed delivery by December 24, use Express or Expedited Shipping.

Product Details

ISBN-13: 9783642674549
Publisher: Springer Berlin Heidelberg
Publication date: 12/07/2011
Series: Reactivity and Structure: Concepts in Organic Chemistry , #11
Edition description: Softcover reprint of the original 1st ed. 1980
Pages: 468
Product dimensions: 6.69(w) x 9.61(h) x 0.04(d)

Table of Contents

1 Hydroformylation. Oxo Synthesis, Roelen Reaction.- 1.1 Introduction.- 1.2 Hydroformylation Mechanism.- 1.2.1 The Mechanism According to Heck and Breslow.- 1.2.2 Recent Interpretations.- 1.2.3 Kinetics.- 1.2.4 Potential Industrial Significance.- 1.3 Effect of Reaction Conditions on Conversion, Selectivity and Operation of the Oxo Synthesis.- 1.3.1 Temperature.- 1.3.1.1 Unmodified Catalysts.- 1.3.1.2 Modified Catalysts.- 1.3.2 Total Pressure; CO and H2 Partial Pressures.- 1.3.2.1 Unmodified Catalysts.- 1.3.2.2 Modified Catalysts.- 1.3.3 Catalysts.- 1.3.3.1 Hydroformylation Catalysts and their Variants.- 1.3.3.1.1 Via Variation of Central Atom.- 1.3.3.1.2 Via Variation of Ligands.- Cobalt Catalysts.- Rhodium Catalysts.- Various.- 1.3.3.1.3 Via Variation of Application Phase.- Heterogenized (Immobilized) Catalysts.- Production of Heterogenized Oxo Catalysts.- Hydroformylation with Heterogenized Oxo Catalysts.- Gas Phase Hydroformylation.- Various Methods.- 1.3.3.1.4 Activators, Promoters and Other Catalyst Additives.- 1.3.3.2 Catalyst Poisons.- 1.3.3.3 Effect of Catalyst Concentration.- 1.3.3.4 Catalyst Recycle in Industrial Oxo Process.- 1.3.3.4.1 Unmodified Catalysts.- 1.3.3.4.2 Modified Catalysts.- 1.3.4 Solvent Effects.- 1.3.5 Concentration of Reactants.- 1.3.6 Residence Time of Reactants.- 1.3.7 Influence of Reaction Conditions on Construction and Operation of Industrial Oxo Reactors.- 1.4 Hydroformylation of Particular Structures.- 1.4.1 Monoolefins.- 1.4.2 Di- and Triolefins.- 1.4.2.1 Di- and Triolefins with Isolated Double Bonds.- 1.4.2.2 Conjugated Systems and Alienes.- 1.4.3 Acetylenes.- 1.4.4 Functionally Substituted Olefins.- 1.4.4.1 Unsaturated Alcohols.- 1.4.4.2 Unsaturated Aldehydes and Ketones.- 1.4.4.3 Unsaturated Esters.- 1.4.4.4 Unsaturated Ethers and Acetals.- 1.4.4.5 Unsaturated Halogen Compounds.- 1.4.4.6 Unsaturated Nitrogen Compounds.- 1.4.4.7 Hydroformylation of Special Compounds.- 1.4.5 Hydroformylation of Polymers.- 1.4.6 Asymmetric Hydroformylation.- 1.5 Parallel and Consecutive Reactions Under Hydroformylation Conditions.- 1.5.1 Side Reactions Resulting in a Decrease in Yield.- 1.5.1.1 Hydrogenation of Olefins to Hydrocarbons.- 1.5.1.2 Formation of Formic Acid Esters.- 1.5.1.3 Ketone Formation.- 1.5.1.4 Formation of Heavy Ends.- 1.5.2 Selectivity Lowering Secondary Reactions.- 1.5.2.1 Aldolization of Aldehydes.- 1.5.2.1.1 Undesired Aldolizations.- 1.5.2.1.2 Controlled Aldolization (Aldox Variants).- 1.5.2.2 Hydrogenation of Aldehydes to Alcohols.- 1.5.2.2.1 Undesired Hydrogenation.- 1.5.2.2.2 Controlled Hydrogenation.- 1.5.2.3 Synthesis of Isomeric Oxo Products.- 1.5.2.3.1 The n:iso Problem of the Oxo Synthesis.- With Propylene or Butylenes.- With Higher Olefins as Feedstocks.- The Hydroformylation of Functionally Substituted Olefins.- 1.5.2.3.2 Isobutyraldehyde as the ‘Main By-product’ of the Propylene Hydroformation.- Secondary Reactions with Isobutyraldehyde.- Cracking of Isobutyraldehyde.- Isomerization of Isobutyraldehyde.- 1.5.3 Various Side Reactions.- 1.5.4 Work up of By-products of the Oxo Synthesis to Value Products.- 1.6 The Industrial Oxo Synthesis: Process Variants and Economic Background.- 1.6.1 Industrial Aspects of the Oxo Synthesis.- 1.6.2 Process Variants of the Industrial Oxo Syntheses.- 1.6.2.1 Cobalt (Compounds) as Catalysts.- 1.6.2.1.1 Ruhrchemie Process.- 1.6.2.1.2 BASF Process.- 1.6.2.1.3 Kuhlmann (PCUK) Process.- 1.6.2.1.4 Shell Process.- 1.6.2.1.5 Various Processes.- 1.6.2.2 Rhodium (Compounds) as Catalysts.- 1.6.2.2.1 Ruhrchemie Process.- 1.6.2.2.2 Process Developed by the Group—Union Carbide/Davy Powergas/Johnson, Matthey & Co. (Low PressureOxo Process—LPO).- 1.6.2.2.3 Process Developed by Union Oil of California.- 1.6.2.2.4 Various Processes.- 1.6.3 Comparative Considerations.- 1.6.4 Economic Aspects of Industrial Oxo Processes.- 1.6.5 Oxo-analogue Reactions.- 1.7 References.- 2 Homologation of Alcohols.- 2.1 Introduction.- 2.2 Reaction Mechanism.- 2.3 Effekt of Reaction Conditions.- 2.3.1 Catalysts and Promoters.- 2.3.2 Temperature.- 2.3.3 Pressure.- 2.3.4 CO:H2 Ratio.- 2.3.5 Catalyst Concentration.- 2.4 Homologation of Particular Structures.- 2.5 Parallel and Secondary Reactions of the Homologation.- 2.5.1 Hydrogenation.- 2.5.2 Carbonylation to Acids.- 2.5.3 Acetal Formation.- 2.5.4 Ether Formation.- 2.6 Heterogeneously Catalyzed Homologation.- 2.7 Future Prospects of the Homologation.- 2.7.1 As an Alternative Source of Ethylene.- 2.7.2 Production of Styrene.- 2.7.3 The Production of Methyl Fuels.- 2.8 References.- 3 Carbonylations Catalyzed by Metal Carbonyls-Reppe Reactions.- 3.1 Introduction.- 3.2 Reaction Mechanism.- 3.3 Catalysts.- 3.3.1 Nickel Catalysts.- 3.3.2 Cobalt Catalysts.- 3.3.3 Rhodium Catalysts.- 3.3.4 Palladium and Platinum Catalysts.- 3.3.5 Iron Catalysts.- 3.3.6 Copper Catalysts.- 3.4 Effect of Temperature and Pressure.- 3.5 Solvents.- 3.6 Carbonylation of Various Structures.- 3.6.1 Carbonylation of Alkynes.- 3.6.1.1 Alkynes and Functional Derivatives in the Presence of Water.- Various Catalysts.- 3.6.1.2 Alkynes and Derivatives in the Presence of Alcohols.- 3.6.1.3 Alkynes in Presence of Carboxylic Acids, Hydrogen Halides, Mercaptans or Amines.- 3.6.2 Carbonylation of Alkenes.- 3.6.2.1 Alkenes and Functional Derivatives in the Presence of Water.- 3.6.2.1.1 Oxidative Carbonylation of Alkenes.- 3.6.2.2 Alkenes and Functional Derivatives in the Presence of Alcohols.- 3.6.2.3 Alkenes and Functional Derivatives in the Presence of Nucleophiles other than Water or Alcohols.- 3.6.3 Carbonylation of Alcohols.- 3.6.3.1 Cobalt Catalysts.- 3.6.3.2 Rhodium Catalysts.- 3.6.3.3 Nickel Catalysts.- 3.6.3.4 Palladium Catalysts.- 3.6.3.5 Various Catalysts.- 3.6.4 Carbonylation of Amines.- 3.6.5 Carbonylation of Ethers and Esters.- 3.6.5.1 Carbonylation of Carboxylic Acid Esters.- 3.6.5.2 Carbonylation of Ethers.- 3.6.6 Carbonylation of Halides.- 3.6.7 Carbonylation of Aldehydes.- 3.6.8 Carbonylation of Aromatic Nitro Compounds.- 3.7 Industrial Applications of Carbonylation Reactions.- 3.7.1 Production of Acrylic Acid and its Esters.- 3.7.2 Production of Acetic Acid.- 3.7.3 Production of Butanol and Propionic Acid.- 3.7.4 Production of Tolylene Diisocyanates.- 3.8 Concluding Remarks.- 3.9 References.- 4 Hydrogenation of the Carbon Monoxide.- 4.1 Methanol Syntheses.- 4.1.1 General Remarks.- 4.1.2 Reaction Mechanism.- 4.1.3 Reaction Conditions.- 4.1.4 Catalysts.- 4.1.5 Processes.- 4.1.6 Economic Potential and Possible Developments in Methanol Synthesis.- 4.2 Glycol Syntheses.- 4.2.1 General Remarks.- 4.2.2 Glycols via Hydrogenation of Carbon Monoxide with Cobalt Catalysts.- 4.2.3 Glycols via Hydrogenation of Carbon Monoxide with Rhodium Catalysts.- 4.2.4 Economic Potential and Possible Developments in the Glycol Synthesis.- 4.3 Methane Syntheses.- 4.3.1 General Remarks.- 4.3.2 Reaction Mechanism.- 4.3.3 Reaction Conditions.- 4.3.4 Catalysts.- 4.3.5 Processes.- 4.3.6 Economic Potential and Possible Developments in the Methane Synthesis.- 4.4 The Fischer-Tropsch Hydrocarbon Synthesis.- 4.4.1 General Remarks.- 4.4.2 Reaction Mechanism.- 4.4.2.1 Stoichiometry.- 4.4.2.2 Thermodynamics.- 4.4.2.3 Mechanism.- 4.4.2.4 Kinetics.- 4.4.3 Reaction Conditions.- 4.4.4 Catalysts.- 4.4.5 Processes.- 4.4.6 Economic Potential and Possible Developments.- 4.5 Polymethylene Synthesis.- 4.5.1 General Remarks.- 4.5.2 Reaction Mechanism.- 4.5.3 Catalysts.- 4.5.4 Reaction Conditions.- 4.5.5 Economic Potential and Possible Developments in the Polymethylene Synthesis.- 4.6 References.- 5 Koch Reactions.- 5.1 Introduction.- 5.2 Reaction Mechanism.- 5.2.1 Formation of Intermediate Carbenium Ions 2 from Various Precursors.- 5.2.2 Reactions of Intermediate Carbenium Ions 2.- Isomerization / Rearrangement.- Olefin Formation.- Disproportionation.- Oligomerization.- Cracking of the Carbon Skeleton.- 5.2.3 Formation of Intermediate Acyl Cations.- 5.2.4 Reactions of Intermediate Acyl Cations.- 5.2.5 Secondary Reactions of Carboxylic Acids.- 5.2.6 Retro-Koch Reaction.- 5.2.7 Heterogeneous Variants of the Koch Synthesis.- 5.3 Catalysts.- 5.3.1 Based on BF3.- 5.3.2 Based on H2SO4.- 5.3.3 Based on H3PO4.- 5.3.4 Based on HF.- 5.3.5 Based on SbF5/SbCl5.- 5.3.6 Various.- 5.3.7 Normal Pressure Synthesis in Presence of Elements of Group IB.- 5.4 Effect of Temperature and Pressure.- 5.5 Solvents and Diluents.- 5.6 Carbonylation of Particular Compounds.- 5.6.1 Olefins and Dienes.- 5.6.2 Alcohols and Diols.- 5.6.3 Paraffins.- 5.6.4 Unsaturated Carboxylic Acids.- 5.6.5 Halogenated Compounds.- 5.6.6 Other Starting Materials.- 5.7 Industrial Applications and Economic Aspects.- 5.8 References.- 6 Ring Closure Reactions with Carbon Monoxide.- 6.1 Introduction.- 6.2 Reaction Mechanism.- 6.3 Catalysts, Reaction Conditions and Solvents.- 6.3.1 Catalysts.- 6.3.2 Reaction Conditions.- 6.3.3 Solvents.- 6.4 Ring Closure Reactions with CO and Various Substrates.- 6.4.1 Formation of Imides.- 6.4.2 Formation of Lactams.- 6.4.3 Formation of Lactones.- 6.4.3.1 Lactones via Carbonylation of Unsaturated Alcohols, Esters or Acids.- 6.4.3.2 Lactones via Carbonylation of Alkenes or Alkynes.- 6.4.3.3 Lactones via Carbonylation of Cyclic Ethers or Epoxides.- 6.4.3.4 Lactones via Carbonylation of Alkyl, Allyl or Acyl Halides.- 6.4.4 Formation of Phthalimidines from Schiff Bases or Aromatic Nitriles.- 6.4.5 Formation of Phthalimidines from Aromatic Ketoximes, Phenylhydrazones, Semicarbazones or Azines.- 6.4.6 Formation of Indazolones and Quinazolines from Azobenzenes.- 6.4.7 Formation of Indones.- 6.4.8 Formation of Cyclic Ketones from Dienes.- 6.4.9 Formation of Phenols from Allyl Halides and Alkynes.- 6.4.10 Other Carbonylation Reactions Leading to Heterocyclic Compounds.- 6.4.10.1 Formation of Oxygen-Containing Ring Systems.- 6.4.10.2 Formation of Nitrogen-Containing Ring Systems.- 6.4.10.3 Formation of Sulfur-Containing Ring Systems.- 6.5 Commercial Applications.- 6.6 References.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews