Nonlinear Functional Analysis and its Applications: I: Fixed-Point Theorems
The greatest mathematicians, such as Archimedes, Newton, and Gauss, always united theory and applications in equal measure. Felix Klein There exists the remarkable possibility that one can master a subject mathemati­ cally, without really understanding its essence. Albert Einstein Don't give us numbers: give us insight! A contemporary natural scientist to a mathematician Numerous questions in physics, chemistry, biology, and economics lead to nonlinear problems; for example, deformation of rods, plates, and shells; behavior of plastic materials; surface waves of fluids; flows around objects in fluids or gases; shock waves in gases; movement of viscous fluids; equilibrium forms of rotating fluids in astrophysics; determination of the shape of the earth through gravitational measu- ments; behavior of magnetic fields of astrophysical objects; melting processes; chemical reactions; heat radiation; processes in nuclear reactors; nonlinear oscillation in physics, chemistry, and biology; 2 Introduction existence and stability of periodic and quasiperiodic orbits in celestial mechanics; stability of physical, chemical, biological, ecological, and economic processes; diffusion processes in physics, chemistry, and biology; processes with entropy production, and self-organization of systems in physics, chemistry, and biology; study of the electrical potential variation in the heart through measure­ ments on the body surface to prevent heart attacks; determining material constants or material laws (e. g.
1113955654
Nonlinear Functional Analysis and its Applications: I: Fixed-Point Theorems
The greatest mathematicians, such as Archimedes, Newton, and Gauss, always united theory and applications in equal measure. Felix Klein There exists the remarkable possibility that one can master a subject mathemati­ cally, without really understanding its essence. Albert Einstein Don't give us numbers: give us insight! A contemporary natural scientist to a mathematician Numerous questions in physics, chemistry, biology, and economics lead to nonlinear problems; for example, deformation of rods, plates, and shells; behavior of plastic materials; surface waves of fluids; flows around objects in fluids or gases; shock waves in gases; movement of viscous fluids; equilibrium forms of rotating fluids in astrophysics; determination of the shape of the earth through gravitational measu- ments; behavior of magnetic fields of astrophysical objects; melting processes; chemical reactions; heat radiation; processes in nuclear reactors; nonlinear oscillation in physics, chemistry, and biology; 2 Introduction existence and stability of periodic and quasiperiodic orbits in celestial mechanics; stability of physical, chemical, biological, ecological, and economic processes; diffusion processes in physics, chemistry, and biology; processes with entropy production, and self-organization of systems in physics, chemistry, and biology; study of the electrical potential variation in the heart through measure­ ments on the body surface to prevent heart attacks; determining material constants or material laws (e. g.
279.99 In Stock
Nonlinear Functional Analysis and its Applications: I: Fixed-Point Theorems

Nonlinear Functional Analysis and its Applications: I: Fixed-Point Theorems

Nonlinear Functional Analysis and its Applications: I: Fixed-Point Theorems

Nonlinear Functional Analysis and its Applications: I: Fixed-Point Theorems

Hardcover(1986)

$279.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

The greatest mathematicians, such as Archimedes, Newton, and Gauss, always united theory and applications in equal measure. Felix Klein There exists the remarkable possibility that one can master a subject mathemati­ cally, without really understanding its essence. Albert Einstein Don't give us numbers: give us insight! A contemporary natural scientist to a mathematician Numerous questions in physics, chemistry, biology, and economics lead to nonlinear problems; for example, deformation of rods, plates, and shells; behavior of plastic materials; surface waves of fluids; flows around objects in fluids or gases; shock waves in gases; movement of viscous fluids; equilibrium forms of rotating fluids in astrophysics; determination of the shape of the earth through gravitational measu- ments; behavior of magnetic fields of astrophysical objects; melting processes; chemical reactions; heat radiation; processes in nuclear reactors; nonlinear oscillation in physics, chemistry, and biology; 2 Introduction existence and stability of periodic and quasiperiodic orbits in celestial mechanics; stability of physical, chemical, biological, ecological, and economic processes; diffusion processes in physics, chemistry, and biology; processes with entropy production, and self-organization of systems in physics, chemistry, and biology; study of the electrical potential variation in the heart through measure­ ments on the body surface to prevent heart attacks; determining material constants or material laws (e. g.

Product Details

ISBN-13: 9780387909141
Publisher: Springer New York
Publication date: 12/13/1985
Edition description: 1986
Pages: 909
Product dimensions: 6.10(w) x 9.25(h) x 0.07(d)

Table of Contents

Fundamental Fixed-Point Principles.- 1 The Banach Fixed-Point Theorem and Iterative Methods.- 2 The Schauder Fixed-Point Theorem and Compactness.- Applications of the Fundamental Fixed-Point Principles.- 3 Ordinary Differential Equations in B-spaces.- 4 Differential Calculus and the Implicit Function Theorem.- 5 Newton’s Method.- 6 Continuation with Respect to a Parameter.- 7 Positive Operators.- 8 Analytic Bifurcation Theory.- 9 Fixed Points of Multivalued Maps.- 10 Nonexpansive Operators and Iterative Methods.- 11 Condensing Maps and the Bourbaki—Kneser Fixed-Point Theorem.- The Mapping Degree and the Fixed-Point Index.- 12 The Leray-Schauder Fixed-Point Index.- 13 Applications of the Fixed-Point Index.- 14 The Fixed-Point Index of Differentiable and Analytic Maps.- 15 Topological Bifurcation Theory.- 16 Essential Mappings and the Borsuk Antipodal Theorem.- 17 Asymptotic Fixed-Point Theorems.- References.- Additional References to the Second Printing.- List of Symbols.- List of Theorems.- List of the Most Important Definitions.- Schematic Overviews.- General References to the Literature.- List of Important Principles.- of the Other Parts.
From the B&N Reads Blog

Customer Reviews