Notes on Real Analysis and Measure Theory: Fine Properties of Real Sets and Functions
This monograph gives the reader an up-to-date account of the fine properties of real-valued functions and measures. The unifying theme of the book is the notion of nonmeasurability, from which one gets a full understanding of the structure of the subsets of the real line and the maps between them. The material covered in this book will be of interest to a wide audience of mathematicians, particularly to those working in the realm of real analysis, general topology, and probability theory. Set theorists interested in the foundations of real analysis will find a detailed discussion about the relationship between certain properties of the real numbers and the ZFC axioms, Martin's axiom, and the continuum hypothesis.

1142014906
Notes on Real Analysis and Measure Theory: Fine Properties of Real Sets and Functions
This monograph gives the reader an up-to-date account of the fine properties of real-valued functions and measures. The unifying theme of the book is the notion of nonmeasurability, from which one gets a full understanding of the structure of the subsets of the real line and the maps between them. The material covered in this book will be of interest to a wide audience of mathematicians, particularly to those working in the realm of real analysis, general topology, and probability theory. Set theorists interested in the foundations of real analysis will find a detailed discussion about the relationship between certain properties of the real numbers and the ZFC axioms, Martin's axiom, and the continuum hypothesis.

109.99 In Stock
Notes on Real Analysis and Measure Theory: Fine Properties of Real Sets and Functions

Notes on Real Analysis and Measure Theory: Fine Properties of Real Sets and Functions

by Alexander Kharazishvili
Notes on Real Analysis and Measure Theory: Fine Properties of Real Sets and Functions

Notes on Real Analysis and Measure Theory: Fine Properties of Real Sets and Functions

by Alexander Kharazishvili

Paperback(1st ed. 2022)

$109.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This monograph gives the reader an up-to-date account of the fine properties of real-valued functions and measures. The unifying theme of the book is the notion of nonmeasurability, from which one gets a full understanding of the structure of the subsets of the real line and the maps between them. The material covered in this book will be of interest to a wide audience of mathematicians, particularly to those working in the realm of real analysis, general topology, and probability theory. Set theorists interested in the foundations of real analysis will find a detailed discussion about the relationship between certain properties of the real numbers and the ZFC axioms, Martin's axiom, and the continuum hypothesis.


Product Details

ISBN-13: 9783031170355
Publisher: Springer International Publishing
Publication date: 09/25/2022
Series: Springer Monographs in Mathematics
Edition description: 1st ed. 2022
Pages: 253
Product dimensions: 6.10(w) x 9.25(h) x (d)

About the Author

Alexander Kharazishvili is a Professor of Mathematics at I. Chavachavadze Tibilisi State University in Georgia. An expert in classical Real Analysis in the tradition of the Lusin school, he is the author of the well known monograph Strange Functions in Real Analysis.

Table of Contents

Preface.- 1. Real-Valued Semicontinuous Functions.- 2. The Oscillations of Real-Valued Functions.- 3. Monotone and Continuous Restrictions of Real-Valued Functions.- 4. Bijective Continuous Images of Absolute Null Sets.- 5. Projective Absolutely Nonmeasurable Functions.- 6. Borel Isomorphisms of Analytic Sets.- 7. Iterated Integrals of Real-Valued Functions of Two Real Variables.- 8. The Steinhaus Property, Ergocidity, and Density Points.- 9. Measurability Properties of H-Selectors and Partial H-Selectors.- 10. A Decomposition of an Uncountable Solvable Group into Three Negligible Sets.- 11. Negligible Sets Versus Absolutely Nonmeasurable Sets.- 12. Measurability Properties of Mazurkiewicz Sets.- 13. Extensions of Invariant Measures on R.- A. A Characterization of Uncountable Sets in Terms of their Self-Mappings.- B. Some Applications of Peano Type Functions.- C. Almost Rigid Mathematical Structures.- D. Some Unsolved Problems in Measure Theory.- Bibliography.- Index.
From the B&N Reads Blog

Customer Reviews