Number Fields and Function Fields - Two Parallel Worlds

Number Fields and Function Fields - Two Parallel Worlds


Choose Expedited Shipping at checkout for guaranteed delivery by Thursday, March 28

Product Details

ISBN-13: 9780817643973
Publisher: Birkhäuser Boston
Publication date: 09/14/2005
Series: Progress in Mathematics , #239
Edition description: 2005
Pages: 321
Product dimensions: 6.10(w) x 9.25(h) x 0.03(d)

Table of Contents

* Preface
* Participants
* List of Contributors
* G. Böckle: Arithmetic over Function Fields: A Cohomological Approach
* T. van den Bogaart and B. Edixhoven: Algebraic Stacks Whose Number of Points over Finite Fields Is a Polynomial
* H. Brenner: On a Problem of Miyaoka
* F. Breuer and R. Pink: Monodromy Groups Associated to Nonisotrivial Drinfeld Modules in Generic Characteristic
* K. Conrad: Irreducible Values of Polynomials: A Nonanalogy
* A. Deitmar: Schemes over F1
* C. Deninger and A. Werner: Line Bundles and p-Adic Characters
* G. Faltings: Arithmetic Eisenstein Classes on the Siegel Space: Some Computations
* U. Hartl: Uniformizing the Stacks of Abelian Sheaves
* R. de Jong: Faltings’ Delta-Invariant of a Hyperelliptic Riemann Surface
* K. Köhler: A Hirzebruch Proportionality Principle in Arakelov Geometry
* U. Kühn: On the Height Conjecture for Algebraic Points on Curves Defined over Number Fields
* J.C. Lagarias: A Note on Absolute Derivations and Zeta Functions
* V. Maillot and D. Roessler: On the Order of Certain Characteristic Classes of the Hodge Bundle of Semiabelian Schemes
* D. Roessler: A Note on the Manin–Mumford Conjecture

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews