Numbers, Sets and Axioms: The Apparatus of Mathematics
Following the success of Logic for Mathematicians, Dr Hamilton has written a text for mathematicians and students of mathematics that contains a description and discussion of the fundamental conceptual and formal apparatus upon which modern pure mathematics relies. The author's intention is to remove some of the mystery that surrounds the foundations of mathematics. He emphasises the intuitive basis of mathematics; the basic notions are numbers and sets and they are considered both informally and formally. The role of axiom systems is part of the discussion but their limitations are pointed out. Formal set theory has its place in the book but Dr Hamilton recognises that this is a part of mathematics and not the basis on which it rests. Throughout, the abstract ideas are liberally illustrated by examples so this account should be well-suited, both specifically as a course text and, more broadly, as background reading. The reader is presumed to have some mathematical experience but no knowledge of mathematical logic is required.
1100955925
Numbers, Sets and Axioms: The Apparatus of Mathematics
Following the success of Logic for Mathematicians, Dr Hamilton has written a text for mathematicians and students of mathematics that contains a description and discussion of the fundamental conceptual and formal apparatus upon which modern pure mathematics relies. The author's intention is to remove some of the mystery that surrounds the foundations of mathematics. He emphasises the intuitive basis of mathematics; the basic notions are numbers and sets and they are considered both informally and formally. The role of axiom systems is part of the discussion but their limitations are pointed out. Formal set theory has its place in the book but Dr Hamilton recognises that this is a part of mathematics and not the basis on which it rests. Throughout, the abstract ideas are liberally illustrated by examples so this account should be well-suited, both specifically as a course text and, more broadly, as background reading. The reader is presumed to have some mathematical experience but no knowledge of mathematical logic is required.
94.0 In Stock
Numbers, Sets and Axioms: The Apparatus of Mathematics

Numbers, Sets and Axioms: The Apparatus of Mathematics

by A. G. Hamilton
Numbers, Sets and Axioms: The Apparatus of Mathematics

Numbers, Sets and Axioms: The Apparatus of Mathematics

by A. G. Hamilton

Paperback(New Edition)

$94.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Following the success of Logic for Mathematicians, Dr Hamilton has written a text for mathematicians and students of mathematics that contains a description and discussion of the fundamental conceptual and formal apparatus upon which modern pure mathematics relies. The author's intention is to remove some of the mystery that surrounds the foundations of mathematics. He emphasises the intuitive basis of mathematics; the basic notions are numbers and sets and they are considered both informally and formally. The role of axiom systems is part of the discussion but their limitations are pointed out. Formal set theory has its place in the book but Dr Hamilton recognises that this is a part of mathematics and not the basis on which it rests. Throughout, the abstract ideas are liberally illustrated by examples so this account should be well-suited, both specifically as a course text and, more broadly, as background reading. The reader is presumed to have some mathematical experience but no knowledge of mathematical logic is required.

Product Details

ISBN-13: 9780521287616
Publisher: Cambridge University Press
Publication date: 01/13/1983
Edition description: New Edition
Pages: 268
Product dimensions: 5.98(w) x 9.02(h) x 0.59(d)

Table of Contents

Preface; 1. Numbers; 2. The size of a set; 3. Ordered sets; 4. Set theory; 5. The axiom of choice; 6. Ordinal and cardinal numbers; Hints and solutions to selected exercises; References; Index of symbols; Subject index.
From the B&N Reads Blog

Customer Reviews