Table of Contents
Contributors xv
 Foreword xix
 Preface xxi
 Part I Methodologies for Complex Problem Solving 1
 1 Generating Automatic Projections by Means of Genetic Programming 3
C. Estébanez and R. Aler
 1.1 Introduction 3
 1.2 Background 4
 1.3 Domains 6
 1.4 Algorithmic Proposal 6
 1.5 Experimental Analysis 9
 1.6 Conclusions 11
 References 13
 2 Neural Lazy Local Learning 15
J. M. Valls, I. M. Galván, and P. Isasi
 2.1 Introduction 15
 2.2 Lazy Radial Basis Neural Networks 17
 2.3 Experimental Analysis 22
 2.4 Conclusions 28
 References 30
 3 Optimization Using Genetic Algorithms with Micropopulations 31
Y. Sáez
 3.1 Introduction 31
 3.2 Algorithmic Proposal 33
 3.3 Experimental Analysis: The Rastrigin Function 40
 3.4 Conclusions 44
 References 45
 4 Analyzing Parallel Cellular Genetic Algorithms 49
G. Luque, E. Alba, and B. Dorronsoro
 4.1 Introduction 49
 4.2 Cellular Genetic Algorithms 50
 4.3 Parallel Models for cGAs 51
 4.4 Brief Survey of Parallel cGAs 52
 4.5 Experimental Analysis 55
 4.6 Conclusions 59
 References 59
 5 Evaluating New Advanced Multiobjective Metaheuristics 63
A. J. Nebro, J. J. Durillo, F. Luna, and E. Alba
 5.1 Introduction 63
 5.2 Background 65
 5.3 Description of the Metaheuristics 67
 5.4 Experimental Methodology 69
 5.5 Experimental Analysis 72
 5.6 Conclusions 79
 References 80
 6 Canonical Metaheuristics for Dynamic Optimization Problems 83
G. Leguizamón, G. Ordóñez, S. Molina, and E. Alba
 6.1 Introduction 83
 6.2 Dynamic Optimization Problems 84
 6.3 Canonical MHs for DOPs 88
 6.4 Benchmarks 92
 6.5 Metrics 93
 6.6 Conclusions 95
 References 96
 7 Solving Constrained Optimization Problems with Hybrid Evolutionary Algorithms 101
C. Cotta and A. J. Fernández
 7.1 Introduction 101
 7.2 Strategies for Solving CCOPs with HEAs 103
 7.3 Study Cases 105
 7.4 Conclusions 114
 References 115
 8 Optimization of Time Series Using Parallel, Adaptive, and Neural Techniques 123
J. A. Gómez, M. D. Jaraiz, M. A. Vega, and J. M. Sánchez
 8.1 Introduction 123
 8.2 Time Series Identification 124
 8.3 Optimization Problem 125
 8.4 Algorithmic Proposal 130
 8.5 Experimental Analysis 132
 8.6 Conclusions 136
 References 136
 9 Using Reconfigurable Computing for the Optimization of Cryptographic Algorithms 139
J. M. Granado, M. A. Vega, J. M. Sánchez, and J. A. Gómez
 9.1 Introduction 139
 9.2 Description of the Cryptographic Algorithms 140
 9.3 Implementation Proposal 144
 9.4 Expermental Analysis 153
 9.5 Conclusions 154
 References 155
 10 Genetic Algorithms, Parallelism, and Reconfigurable Hardware 159
J. M. Sánchez, M. Rubio, M. A. Vega, and J. A. Gómez
 10.1 Introduction 159
 10.2 State of the Art 161
 10.3 FPGA Problem Description and Solution 162
 10.4 Algorithmic Proposal 169
 10.5 Experimental Analysis 172
 10.6 Conclusions 177
 References 177
 11 Divide and Conquer: Advanced Techniques 179
C. León, G. Miranda, and C. Rodríguez
 11.1 Introduction 179
 11.2 Algorithm of the Skeleton 180
 11.3 Experimental Analysis 185
 11.4 Conclusions 189
 References 190
 12 Tools for Tree Searches: Branch-and-Bound and A∗ Algorithms 193
C. León, G. Miranda, and C. Rodríguez
 12.1 Introduction 193
 12.2 Background 195
 12.3 Algorithmic Skeleton for Tree Searches 196
 12.4 Experimentation Methodology 199
 12.5 Experimental Results 202
 12.6 Conclusions 205
 References 206
 13 Tools for Tree Searches: Dynamic Programming 209
C. León, G. Miranda, and C. Rodríguez
 13.1 Introduction 209
 13.2 Top-Down Approach 210
 13.3 Bottom-Up Approach 212
 13.4 Automata Theory and Dynamic Programming 215
 13.5 Parallel Algorithms 223
 13.6 Dynamic Programming Heuristics 225
 13.7 Conclusions 228
 References 229
 Part II Applications 231
 14 Automatic Search of Behavior Strategies in Auctions 233
D. Quintana and A. Mochón
 14.1 Introduction 233
 14.2 Evolutionary Techniques in Auctions 234
 14.3 Theoretical Framework: The Ausubel Auction 238
 14.4 Algorithmic Proposal 241
 14.5 Experimental Analysis 243
 14.6 Conclusions 246
 References 247
 15 Evolving Rules for Local Time Series Prediction 249
C. Luque, J. M. Valls, and P. Isasi
 15.1 Introduction 249
 15.2 Evolutionary Algorithms for Generating Prediction Rules 250
 15.3 Experimental Methodology 250
 15.4 Experiments 256
 15.5 Conclusions 262
 References 263
 16 Metaheuristics in Bioinformatics: DNA Sequencing and Reconstruction 265
C. Cotta, A. J. Fernández, J. E. Gallardo, G. Luque, and E. Alba
 16.1 Introduction 265
 16.2 Metaheuristics and Bioinformatics 266
 16.3 DNA Fragment Assembly Problem 270
 16.4 Shortest Common Supersequence Problem 278
 16.5 Conclusions 282
 References 283
 17 Optimal Location of Antennas in Telecommunication Networks 287
G. Molina, F. Chicano, and E. Alba
 17.1 Introduction 287
 17.2 State of the Art 288
 17.3 Radio Network Design Problem 292
 17.4 Optimization Algorithms 294
 17.5 Basic Problems 297
 17.6 Advanced Problem 303
 17.7 Conclusions 305
 References 306
 18 Optimization of Image-Processing Algorithms Using FPGAs 309
M. A. Vega, A. Gómez, J. A. Gómez, and J. M. Sánchez
 18.1 Introduction 309
 18.2 Background 310
 18.3 Main Features of FPGA-Based Image Processing 311
 18.4 Advanced Details 312
 18.5 Experimental Analysis: Software Versus FPGA 321
 18.6 Conclusions 322
 References 323
 19 Application of Cellular Automata Algorithms to the Parallel Simulation of Laser Dynamics 325
J. L. Guisado, F. Jiménez-Morales, J. M. Guerra, and F. Fernández
 19.1 Introduction 325
 19.2 Background 326
 19.3 Laser Dynamics Problem 328
 19.4 Algorithmic Proposal 329
 19.5 Experimental Analysis 331
 19.6 Parallel Implementation of the Algorithm 336
 19.7 Conclusions 344
 References 344
 20 Dense Stereo Disparity from an Artificial Life Standpoint 347
G. Olague, F. Fernández, C. B. Pérez, and E. Lutton
 20.1 Introduction 347
 20.2 Infection Algorithm with an Evolutionary Approach 351
 20.3 Experimental Analysis 360
 20.4 Conclusions 363
 References 363
 21 Exact, Metaheuristic, and Hybrid Approaches to Multidimensional Knapsack Problems 365
J. E. Gallardo, C. Cotta, and A. J. Fernández
 21.1 Introduction 365
 21.2 Multidimensional Knapsack Problem 370
 21.3 Hybrid Models 372
 21.4 Experimental Analysis 377
 21.5 Conclusions 379
 References 380
 22 Greedy Seeding and Problem-Specific Operators for Gas Solution of Strip Packing Problems 385
C. Salto, J. M. Molina, and E. Alba
 22.1 Introduction 385
 22.2 Background 386
 22.3 Hybrid GA for the 2SPP 387
 22.4 Genetic Operators for Solving the 2SPP 388
 22.5 Initial Seeding 390
 22.6 Implementation of the Algorithms 391
 22.7 Experimental Analysis 392
 22.8 Conclusions 403
 References 404
 23 Solving the KCT Problem: Large-Scale Neighborhood Search and Solution Merging 407
C. Blum and M. J. Blesa
 23.1 Introduction 407
 23.2 Hybrid Algorithms for the KCT Problem 409
 23.3 Experimental Analysis 415
 23.4 Conclusions 416
 References 419
 24 Experimental Study of GA-Based Schedulers in Dynamic Distributed Computing Environments 423
F. Xhafa and J. Carretero
 24.1 Introduction 423
 24.2 Related Work 425
 24.3 Independent Job Scheduling Problem 426
 24.4 Genetic Algorithms for Scheduling in Grid Systems 428
 24.5 Grid Simulator 429
 24.6 Interface for Using a GA-Based Scheduler with the Grid Simulator 432
 24.7 Experimental Analysis 433
 24.8 Conclusions 438
 References 439
 25 Remote Optimization Service 443
J. García-Nieto, F. Chicano, and E. Alba
 25.1 Introduction 443
 25.2 Background and State of the Art 444
 25.3 ROS Architecture 446
 25.4 Information Exchange in ROS 448
 25.5 XML in ROS 449
 25.6 Wrappers 450
 25.7 Evaluation of ROS 451
 25.8 Conclusions 454
 References 455
 26 Remote Services for Advanced Problem Optimization 457
J. A. Gómez, M. A. Vega, J. M. Sánchez, J. L. Guisado, D. Lombraña, and F. Fernández
 26.1 Introduction 457
 26.2 SIRVA 458
 26.3 MOSET and TIDESI 462
 26.4 ABACUS 465
 References 470
 Index 473