P, NP, and NP-Completeness: The Basics of Computational Complexity
The focus of this book is the P-versus-NP Question and the theory of NP-completeness. It also provides adequate preliminaries regarding computational problems and computational models. The P-versus-NP Question asks whether or not finding solutions is harder than checking the correctness of solutions. An alternative formulation asks whether or not discovering proofs is harder than verifying their correctness. It is widely believed that the answer to these equivalent formulations is positive, and this is captured by saying that P is different from NP. Although the P-versus-NP Question remains unresolved, the theory of NP-completeness offers evidence for the intractability of specific problems in NP by showing that they are universal for the entire class. Amazingly enough, NP-complete problems exist, and furthermore hundreds of natural computational problems arising in many different areas of mathematics and science are NP-complete.
1111591561
P, NP, and NP-Completeness: The Basics of Computational Complexity
The focus of this book is the P-versus-NP Question and the theory of NP-completeness. It also provides adequate preliminaries regarding computational problems and computational models. The P-versus-NP Question asks whether or not finding solutions is harder than checking the correctness of solutions. An alternative formulation asks whether or not discovering proofs is harder than verifying their correctness. It is widely believed that the answer to these equivalent formulations is positive, and this is captured by saying that P is different from NP. Although the P-versus-NP Question remains unresolved, the theory of NP-completeness offers evidence for the intractability of specific problems in NP by showing that they are universal for the entire class. Amazingly enough, NP-complete problems exist, and furthermore hundreds of natural computational problems arising in many different areas of mathematics and science are NP-complete.
148.0 In Stock
P, NP, and NP-Completeness: The Basics of Computational Complexity

P, NP, and NP-Completeness: The Basics of Computational Complexity

by Oded Goldreich
P, NP, and NP-Completeness: The Basics of Computational Complexity

P, NP, and NP-Completeness: The Basics of Computational Complexity

by Oded Goldreich

Hardcover

$148.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

The focus of this book is the P-versus-NP Question and the theory of NP-completeness. It also provides adequate preliminaries regarding computational problems and computational models. The P-versus-NP Question asks whether or not finding solutions is harder than checking the correctness of solutions. An alternative formulation asks whether or not discovering proofs is harder than verifying their correctness. It is widely believed that the answer to these equivalent formulations is positive, and this is captured by saying that P is different from NP. Although the P-versus-NP Question remains unresolved, the theory of NP-completeness offers evidence for the intractability of specific problems in NP by showing that they are universal for the entire class. Amazingly enough, NP-complete problems exist, and furthermore hundreds of natural computational problems arising in many different areas of mathematics and science are NP-complete.

Product Details

ISBN-13: 9780521192484
Publisher: Cambridge University Press
Publication date: 08/16/2010
Pages: 216
Product dimensions: 6.10(w) x 9.10(h) x 0.70(d)

About the Author

Oded Goldreich is a Professor of Computer Science at the Weizmann Institute of Science and an incumbent of the Meyer W. Weisgal Professorial Chair. He is an editor for the SIAM Journal on Computing, the Journal of Cryptology, and Computational Complexity and previously authored the books Modern Cryptography, Probabilistic Proofs and Pseudorandomness, the two-volume work Foundations of Cryptography, and Computational Complexity: A Conceptual Perspective.

Table of Contents

1. Computational tasks and models; 2. The P versus NP Question; 3. Polynomial-time reductions; 4. NP-completeness; 5. Three relatively advanced topics; Epilogue: a brief overview of complexity theory.
From the B&N Reads Blog

Customer Reviews