Parallel Computing for Data Science: With Examples in R, C++ and CUDA
Parallel Computing for Data Science: With Examples in R, C++ and CUDA is one of the first parallel computing books to concentrate exclusively on parallel data structures, algorithms, software tools, and applications in data science. It includes examples not only from the classic "n observations, p variables" matrix format but also from time series, network graph models, and numerous other structures common in data science. The examples illustrate the range of issues encountered in parallel programming.

With the main focus on computation, the book shows how to compute on three types of platforms: multicore systems, clusters, and graphics processing units (GPUs). It also discusses software packages that span more than one type of hardware and can be used from more than one type of programming language. Readers will find that the foundation established in this book will generalize well to other languages, such as Python and Julia.

1133775163
Parallel Computing for Data Science: With Examples in R, C++ and CUDA
Parallel Computing for Data Science: With Examples in R, C++ and CUDA is one of the first parallel computing books to concentrate exclusively on parallel data structures, algorithms, software tools, and applications in data science. It includes examples not only from the classic "n observations, p variables" matrix format but also from time series, network graph models, and numerous other structures common in data science. The examples illustrate the range of issues encountered in parallel programming.

With the main focus on computation, the book shows how to compute on three types of platforms: multicore systems, clusters, and graphics processing units (GPUs). It also discusses software packages that span more than one type of hardware and can be used from more than one type of programming language. Readers will find that the foundation established in this book will generalize well to other languages, such as Python and Julia.

82.99 In Stock
Parallel Computing for Data Science: With Examples in R, C++ and CUDA

Parallel Computing for Data Science: With Examples in R, C++ and CUDA

by Norman Matloff
Parallel Computing for Data Science: With Examples in R, C++ and CUDA

Parallel Computing for Data Science: With Examples in R, C++ and CUDA

by Norman Matloff

Hardcover(New Edition)

$82.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Parallel Computing for Data Science: With Examples in R, C++ and CUDA is one of the first parallel computing books to concentrate exclusively on parallel data structures, algorithms, software tools, and applications in data science. It includes examples not only from the classic "n observations, p variables" matrix format but also from time series, network graph models, and numerous other structures common in data science. The examples illustrate the range of issues encountered in parallel programming.

With the main focus on computation, the book shows how to compute on three types of platforms: multicore systems, clusters, and graphics processing units (GPUs). It also discusses software packages that span more than one type of hardware and can be used from more than one type of programming language. Readers will find that the foundation established in this book will generalize well to other languages, such as Python and Julia.


Product Details

ISBN-13: 9781466587014
Publisher: Taylor & Francis
Publication date: 06/04/2015
Series: Chapman & Hall/CRC The R Series , #28
Edition description: New Edition
Pages: 328
Product dimensions: 6.20(w) x 9.30(h) x 1.00(d)

About the Author

Dr. Norman Matloff is a professor of computer science at the University of California, Davis, where he was a founding member of the Department of Statistics. He is a statistical consultant and a former database software developer. He has published numerous articles in prestigious journals, such as the ACM Transactions on Database Systems, ACM Transactions on Modeling and Computer Simulation, Annals of Probability, Biometrika, Communications of the ACM, and IEEE Transactions on Data Engineering. He earned a PhD in pure mathematics from UCLA, specializing in probability/functional analysis and statistics.

Table of Contents

Introduction to Parallel Processing in R. "Why Is My Program So Slow?": Obstacles to Speed. Principles of Parallel Loop Scheduling. The Shared Memory Paradigm: A Gentle Introduction through R. The Shared Memory Paradigm: C Level. The Shared Memory Paradigm: GPUs. Thrust and Rth. The Message Passing Paradigm. MapReduce Computation. Parallel Sorting and Merging. Parallel Prefix Scan. Parallel Matrix Operations. Inherently Statistical Approaches: Subset Methods. Appendices.

From the B&N Reads Blog

Customer Reviews