Paperback(Softcover reprint of the original 1st ed. 1988)

View All Available Formats & Editions
Eligible for FREE SHIPPING
  • Want it by Monday, October 22  Order now and choose Expedited Shipping during checkout.


Persistent Spectral Hole-Burning: Science and Applications by William E. Moerner

This book describes the underlying scientific fundamentals and principal phenomena associated with persistent spectral hole-burning in solids, and presents an overview of possible future applications to optical storage of digital data and optical signal processing. Organization of the material is by the general physical mechanism responsible for the formation of persistent spectral holes. After a description of the basic principles and methods of hole-burning, with examples from phohemical processes in crystalline and amorphous hosts, the unusual proton tunneling phenomena that occur in hydrogen-bonded polymers and glasses are described. Persistent spectral hole-burning in inorganic materials due either to photoionization or to photophysical effects is then summarized, followed by a detailed discussion of nonphohemical hole-burning mechanisms for electronic transitions in amorphous solids. The book concludes with a description of potential applications to data storage and optical processsing using frequency-domain, holographic, and electric field techniques. Readers of this volume will gain a detailed appreciation of both the generality of the persistent spectral hole-burning phenomenon and the power of the technique in studying microscopic dynamics and mechanisms of phototransformation in low-temperature solids.

Product Details

ISBN-13: 9783642832925
Publisher: Springer Berlin Heidelberg
Publication date: 01/19/2012
Series: Topics in Current Physics , #44
Edition description: Softcover reprint of the original 1st ed. 1988
Pages: 315
Product dimensions: 6.69(w) x 9.53(h) x 0.03(d)

Table of Contents

1. Introduction.- 1.1 Fundamental Requirements for Persistent Spectral Hole-Burning.- 1.2 Significance for Science and Applications.- 1.3 Historical Overview and Survey of Mechanisms.- 1.4 Synopsis of the Book.- References.- 2. Basic Principles and Methods of Persistent Spectral Hole-Burning.- 2.1 Background.- 2.2 Homogeneous Spectrum of an Electron-Vibrational Transition.- 2.2.1 Integrated Intensities of Purely Electronic Lines and Phonon Sidebands, Electron-Phonon Interactions and Temperature Dependence.- 2.2.2 Relative Width (Q-factor) of PEL. Peak Intensities.- 2.2.3 Role of Local Modes.- 2.3 Inhomogeneous Broadening of the Vibronic Spectrum.- 2.3.1 Inhomogeneous Broadening of Purely Electronic Lines Inhomogeneous Distribution Function.- 2.3.2 Selectivity of the Spectral Response of an Inhomogeneous Absorption Band.- 2.3.3 Inhomogeneous Distribution Function Under Monochromatic Laser Excitation. Site-Selection Spectroscopy.- 2.4 Persistent Spectral Hole-Burning.- 2.4.1 Burning of Spectral Holes in the Inhomogeneous Distribution Function.- 2.4.2 Early Observations of Persistent Spectral Hole-Burning.- 2.5 Kinetics of Persistent Spectral Hole-Burning.- 2.6 Spectroscopic Applications.- 2.6.1 Homogeneous Zero-Phonon Line Broadening and Dephasing in Crystals.- 2.6.2 Phohemical Hole-Burning in Glassy Matrices.- 2.6.3 Homogeneous Linewidths of Vibronic Transitions and Relaxation.- 2.6.4 Off-Resonance Hole-Burning and Non-Correlation Effects.- 2.6.5 Hole-Burning in the Spectra of Chlorophyll-like Molecules.- 2.7 Special Methods of Hole-Burning and Detection.- 2.7.1 Detection of Holes by Doppler Scanning.- 2.7.2 Holographic Detection of Spectral Holes.- 2.7.3 Creation of Sharp Antiholes.- 2.8 Hole-Burning Time-and-Space-Domain Holography.- 2.8.1 Hole-Burning by Picosecond Pulses.- 2.8.2 Theory of Time-and-Space-Domain Holographic Recording and Playback.- 2.8.3 Experimental Results and Discussion.- 2.9 Concluding Remarks.- References.- 3. Phohemical Hole-Burning in Electronic Transitions.- 3.1 Phohemical, Photophysical, and Spin Hole-Burning.- 3.1.1 Historic Survey.- 3.1.2 Radiation-Induced Saturation Versus Chemical Depletion.- a) Transient Saturation.- b) Chemical Depletion.- 3.1.3 Phohemical Systems and Mechanisms.- 3.2 Spectroscopic Analysis of Hole-Burning Experiments.- 3.2.1 General Remarks.- 3.2.2 Fast Relaxation Processes and Excited State Dephasing.- a) Lineshape Analysis.- b) Temperature Dependence of the “Homogeneous” Linewidth.- 3.2.3 Spectral Diffusion in Glasses.- a) TLS Parameters and Tunnelling Rates.- b) Spectroscopic Parameters.- 3.3 Field Effects in Hole-Burning Spectroscopy.- 3.3.1 Introduction: The Site Memory Function.- 3.3.2 Electric-Field Effects.- a) Stark Effect for Molecules with Inversion Symmetry.- b) Stark Effect for Molecules Without Inversion Symmetry.- 3.3.3 Strain-Field Effects.- References.- 4. Persistent Spectral Hole-Burning in Inorganic Materials.- 4.1 Introduction.- 4.2 Hole-Burning Mechanisms.- 4.3 Color Centers.- 4.4 Rare Earth Compounds.- 4.4.1 Trivalent Rare Earth Ions in Glasses.- 4.4.2 Divalent Rare Earth Ions in Crystals.- a) CaF2:Sm2+.- b) SrF2:Sm2+.- c) BaClF:Sm2+.- 4.5 Transition Metal Ions.- 4.5.1 LiGa5 O8:Co2+.- 4.5.2 Y3Al5O12:Ti3+.- 4.6 Conclusion.- References.- 5. Two-Level-System Relaxation in Amorphous Solids as Probed by Nonphohemical Hole-Burning in Electronic Transitions.- 5.1 Background.- 5.2 Survey of NPHB Systems.- 5.2.1 Hydrogen-Bonded Crystals.- 5.2.2 Molecules in Amorphous Polyacene Films.- 5.2.3 Molecules in Organic Glasses.- 5.2.4 Molecules in Polymers.- 5.2.5 Rare-Earth Ions in Glasses and Polymers.- 5.3 Optical Linewidths and Dephasing in Amorphous Solids.- 5.3.1 Single-Impurity Single-TLS System Hamiltonian.- 5.3.2 Optical Dephasing due to Off-Diagonal Modulation.- 5.3.3 Recent Experiments.- 5.3.4 New Theories.- 5.3.5 Comparison of Theories and Experimental Data.- 5.3.6 Hole Widths and TLS Relaxation Processes in Organic Systems.- 5.4 Density of States Functions for TLS.- 5.5 Laser-Induced Hole Filling.- 5.5.1 Rhodamine 640 in Poly(vinylalcohol).- 5.5.2 Nd3+ and Pr3+ in Poly(vinylalcohol).- 5.5.3 A Tentative Model for LIHF.- 5.6 Recent Developments.- 5.7 Concluding Remarks.- References.- 6. Persistent Infrared Spectral Hole-Burning for Impurity Vibrational Modes in Solids.- 6.1 Introduction.- 6.1.1 Matrix-Isolated Molecules in Van der Waals and Ionic Solids.- 6.1.2 Persistent IR Hole-Burning in Vibrational Modes.- 6.2 Molecules in Van der Waals Matrices.- 6.2.1 1,2-Difluorethane (DFE).- a) Diode Laser Measurements.- b) CO2 Laser Measurements.- 6.2.2 Interpretation of Persistence.- 6.2.3 Molecular Aggregates of Methyl Nitrite or Methanol.- 6.3 ReO4? in Alkali Halide Crystals.- 6.3.1 Background and Spectroscopic Information.- 6.3.2 Measurements of Relaxation Times T1 and T2.- 6.3.3 Persistent Spectral Holes for ReO4? in Alkali Halides.- a) Summary of Characteristics.- b) Model for the PIRSH Process.- 6.3.4 Persistent Spectral Pegs.- 6.3.5 Ultrasonic Studies of Multiple Ground State Configurations.- 6.3.6 Conclusions on the ReO4? System.- 6.4 Persistent Spectral Hole-Burning for CN? Molecules in Alkali Halide Crystals.- 6.4.1 Background Information on Matrix-Isolated CN?.- 6.4.2 High-Resolution FTIR Spectroscopy in the CN? Stretch Region.- 6.4.3 Hole-Burning in the CN? Stretch Mode Region.- 6.4.4 A Study of the CN?:Na+ Center Dynamics.- a) Fluorescence.- b) Hole-Burning and—l Center Geometry.- 6.4.5 Other CN? Complexes.- 6.5 Conclusion.- 6.5.1 Comparison of the Three Types of Vibrational Hole-Burning Systems.- 6.5.2 Systems Which do not Exhibit PIRSH Formation.- a) Derivatives of the CN? Molecule.- b) Spherical-Top Molecules Which Contain Hydrogen.- 6.5.3 Future Prospects.- a) NO2? in Alkali Halides.- b) Disordered Solids.- References.- 7. Frequency Domain Optical Storage and Other Applications of Persistent Spectral Hole-Burning.- 7.1 Introduction.- 7.2 Systems Issues for Frequency Domain Optical Storage.- 7.2.1 General Remarks.- 7.2.2 Engineering Studies.- 7.3 Materials Research for Frequency Domain Optical Storage.- 7.3.1 General Materials Requirements.- 7.3.2 Limitations of Single-Photon Recording Mechanisms.- 7.3.3 Photon-Gated Mechanisms.- 7.3.4 Limitations on Storage Density.- 7.4 Alternative Data-Storage Configurations.- 7.4.1 Time Domain Storage.- 7.4.2 Electric-Field Readout.- 7.4.3 Holographic Readout.- 7.5 Other Applications of Persistent Spectral Hole-Burning.- 7.5.1 General Remarks.- 7.5.2 Laser Pulse Shaping Based on Fourier Synthesis.- 7.5.3 Laser Pulse Shaping Based on Voltage Modulation.- 7.5.4 Frequency Multiplexed Optical Spatial Filters.- 7.6 Summary and Future Prospects.- References.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews