Physical Chemistry: Quantum Chemistry and Molecular Interactions / Edition 1

Physical Chemistry: Quantum Chemistry and Molecular Interactions / Edition 1

by Andrew Cooksy
ISBN-10:
0321814169
ISBN-13:
9780321814166
Pub. Date:
01/04/2013
Publisher:
Pearson Education
ISBN-10:
0321814169
ISBN-13:
9780321814166
Pub. Date:
01/04/2013
Publisher:
Pearson Education
Physical Chemistry: Quantum Chemistry and Molecular Interactions / Edition 1

Physical Chemistry: Quantum Chemistry and Molecular Interactions / Edition 1

by Andrew Cooksy
$146.65 Current price is , Original price is $146.65. You
$105.95 
  • SHIP THIS ITEM
    Not Eligible for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores
$95.45  $146.65 Save 35% Current price is $95.45, Original price is $146.65. You Save 35%.
  • SHIP THIS ITEM

    Temporarily Out of Stock Online

    Please check back later for updated availability.

    Note: Access code and/or supplemental material are not guaranteed to be included with used textbook.

Overview

Fostering an intuitive understanding of chemistry, Physical Chemistry: Quantum Chemistry and Molecular Interactions presents the structure and unity of the theoretical framework of modern chemistry in a progression from the single atom to the bulk limit. Employing an engaging and somewhat informal tone, this new text delivers a superior presentation of rigorous mathematical derivations, thermodynamics, and quantum theory and mechanics in a manner that is accessible and applicable to diverse readers.


Product Details

ISBN-13: 9780321814166
Publisher: Pearson Education
Publication date: 01/04/2013
Edition description: New Edition
Pages: 600
Product dimensions: 8.10(w) x 10.10(h) x 1.00(d)

About the Author

Andrew Cooksy is a chemistry professor at San Diego State University, where he teaches courses in physical and general chemistry and carries out research on the spectroscopy, kinetics, and computational chemistry of reactive intermediates in combustion and interstellar processes. He attended the Washington, D.C. public schools before receiving his undergraduate degree in chemistry and physics from Harvard College and his Ph.D. in chemistry from the University of California at Berkeley.

Table of Contents

Quantum Chemistry and Molecular Interactions

A Introduction: Tools from Math and Physics
A.1 Mathematics
A.2 Classical physics

I Atomic Structure

1 Classical and Quantum Mechanics
1.1 Introduction to the Text
1.2 The Classical World
1.3 The Quantum World
1.4 One-Electron Atoms
1.5 Merging the Classical and Quantum Worlds

2 The Schrödinger Equation
2.1 Mathematical Tools of Quantum Mechanics
2.2 Fundamental Examples

3 One-Electron Atoms
3.1 Solving the One-Electron Atom Schrödinger Equation
3.2 The One-Electron Atom Orbital Wavefunctions
3.3 Electric Dipole Interactions
3.4 Magnetic Dipole Interactions

4 Many-Electron Atoms
4.1 Many-Electron Spatial Wavefunctions
4.2 Approximate Solution to the Schrodinger Equation
4.3 Spin Wavefunctions and Symmetrization
4.4 Vector Model of the Many-Electron Atom
4.5 Periodicity of the Elements
4.6 Atomic Structure: The Key to Chemistry

II Molecular Structure

5 Chemical Bonds
5.1 The Molecular Hamiltonian
5.2 The Molecular Wavefunction
5.3 Covalent Bonds in Polyatomic Molecules
5.4 Non-Covalent Bonds
5.5 Nuclear Magnetic Resonance Spectroscopy

6 Molecular Symmetry
6.1 Group Theory
6.2 Symmetry Representations for Wavefunctions
6.3 Selection Rules
6.4 Selected Applications

7 Electronic States of Molecules
7.1 Molecular Orbital Configurations
7.2 Electronic States
7.3 Computational Methods for Molecules
7.4 Energetic Processes

8 Vibrational States of Molecules
8.1 The Vibrational Schrödinger Equation
8.2 Vibrational Energy Levels in Diatomics
8.3 Vibrations in Polyatomics
8.4 Spectroscopy of Vibrational States

9 Rotational States of Molecules
9.1 Rotations in Diatomics
9.2 Rotations in Polyatomics
9.3 Spectroscopy of Rotational States

III Molecular Interactions
10 Intermolecular Forces
10.1 Intermolecular Potential Energy
10.2 Molecular Collisions

11 Nanoscale Chemical Structure
11.1 The Nano Scale
11.2 Clusters
11.3 Macromolecules

12 The Structure of Liquids
12.1 The Qualitative Nature of Liquids
12.2 Weakly Bonded Pure Liquids
12.3 Solvation

13 The Structure of Solids
13.1 Amorphous Solids, Polymers, and Crystals
13.2 Symmetry in Crystals
13.3 Bonding Mechanisms and Properties of Crystals
13.4 Wavefunctions and Energies of Solids

From the B&N Reads Blog

Customer Reviews