Predictive Simulation of Semiconductor Processing: Status and Challenges / Edition 1

Predictive Simulation of Semiconductor Processing: Status and Challenges / Edition 1

ISBN-10:
3540204814
ISBN-13:
9783540204817
Pub. Date:
06/24/2004
Publisher:
Springer Berlin Heidelberg
ISBN-10:
3540204814
ISBN-13:
9783540204817
Pub. Date:
06/24/2004
Publisher:
Springer Berlin Heidelberg
Predictive Simulation of Semiconductor Processing: Status and Challenges / Edition 1

Predictive Simulation of Semiconductor Processing: Status and Challenges / Edition 1

Hardcover

$219.99 Current price is , Original price is $219.99. You
$219.99 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Overview

Predictive Simulation of Semiconductor Processing enables researchers and developers to extend the scaling range of semiconductor devices beyond the parameter range of empirical research. It requires a thorough understanding of the basic mechanisms employed in device fabrication, such as diffusion, ion implantation, epitaxy, defect formation and annealing, and contamination. This book presents an in-depth discussion of our current understanding of key processes and identifies areas that require further work in order to achieve the goal of a comprehensive, predictive process simulation tool.


Product Details

ISBN-13: 9783540204817
Publisher: Springer Berlin Heidelberg
Publication date: 06/24/2004
Series: Springer Series in Materials Science , #72
Edition description: 2004
Pages: 490
Product dimensions: 6.10(w) x 9.25(h) x 0.04(d)

About the Author

J. Dabrowski: Born in Warsaw, Poland, Sept. 29, 1958. PhD, Institute of Physics of the Polish Academy of Science (IF PAN), Warsaw, 1989. Scientific staff member IF PAN 1983-1992; postdoctoral fellow Fritz Haber Inbstitute of the Max Planck Society, Berlin, Germany, 1990-1991; postdoctoral fellow Xerox Palo Alto Research Center, California, 1992; since 1993 with IHP-microelectronics, Frankfurt (Oder), Germany. Conference series chairman, Challenges in Predictive Process Simulation (1997, 2000, 2002); international advisory commmittee member, International Training Institute for Materials Science, Hanoi, Vietnam. Project leader, German Research Society (1998-2000); von Neuman Institute for Computing (since 1993). Author (monograph), "Silicon surfaces and formation of interfaces; basic science in the industrial world" (World Scientific, 2000). Editor (book) , ""Recent Developments in Vacuum Science and Technology" (Research Signpost, 2003). Research in atomic diffusion mechanism in solid state; atomic structure of surfaces and semiconductor/dielectric interfaces; atomic structure of defects in semiconductors and insulators; signal processing for telecommunication. Achievements include discovery of atomic structure of the clean Si(113) surface; atomic structure of the main electron trap in GaAs (EL2 defect); atomic structure of the interface between a high-K dielectric (Pr2O3) and Si(001). Patents for silicon microelectronic technology; patents pending for telecommunication.

Table of Contents

1 Transistors and Atoms.- 2 Atomistic Simulations of Processes at Surfaces.- 3 Atomistic Simulations in Materials Processing.- 4 Atomistic Simulation of Decanano MOSFETs.- 5 Modeling and Simulation of Heterojunction Bipolar Transistors.- 6 Gate Oxide Reliability: Physical and Computational Models.- 7 High-K Dielectrics: The Example of Pr2O3.- 8 Atomistic Simulation of Si3N4 CVD from Dichlorosilane and NH3.- 9 Interconnects and Propagation of High Frequency Signals.- 10 Modeling of Electromigration in Interconnects.- 11 Predictive Modeling of Transition Metal Gettering: Applications and Materials Science Challenges.
From the B&N Reads Blog

Customer Reviews