Probing Galaxy Evolution by Unveiling the Structure of Massive Galaxies Across Cosmic Time and in Diverse Environments
Awarded the American Astronomical Society (AAS) Rodger Doxsey Travel Prize, and with a foreword by thesis supervisor Professor Shardha Jogee at the University of Texas at Austin, this thesis discusses one of the primary outstanding problems in extragalactic astronomy: how galaxies form and evolve. Galaxies consist of two fundamental kinds of structure: rotationally supported disks and spheroidal/triaxial structures supported by random stellar motions. Understanding the balance between these galaxy components is vital to comprehending the relative importance of the different mechanisms (galaxy collisions, gas accretion and internal secular processes) that assemble and shape galaxies. Using panchromatic imaging from some of the largest and deepest space-based galaxy surveys, an empirical census of galaxy structure is made for galaxies at different cosmic epochs and in environments spanning low to extremely high galaxy number densities. An important result of this work is that disk structures are far more prevalent in massive galaxies than previously thought. The associated challenges raised for contemporary theoretical models of galaxy formation are discussed. The method of galaxy structural decomposition is treated thoroughly since it is relevant for future studies of galaxy structure using next-generation facilities, like the James Webb Space Telescope and the ground-based Giant Magellan Telescope with adaptive optics.

1119163041
Probing Galaxy Evolution by Unveiling the Structure of Massive Galaxies Across Cosmic Time and in Diverse Environments
Awarded the American Astronomical Society (AAS) Rodger Doxsey Travel Prize, and with a foreword by thesis supervisor Professor Shardha Jogee at the University of Texas at Austin, this thesis discusses one of the primary outstanding problems in extragalactic astronomy: how galaxies form and evolve. Galaxies consist of two fundamental kinds of structure: rotationally supported disks and spheroidal/triaxial structures supported by random stellar motions. Understanding the balance between these galaxy components is vital to comprehending the relative importance of the different mechanisms (galaxy collisions, gas accretion and internal secular processes) that assemble and shape galaxies. Using panchromatic imaging from some of the largest and deepest space-based galaxy surveys, an empirical census of galaxy structure is made for galaxies at different cosmic epochs and in environments spanning low to extremely high galaxy number densities. An important result of this work is that disk structures are far more prevalent in massive galaxies than previously thought. The associated challenges raised for contemporary theoretical models of galaxy formation are discussed. The method of galaxy structural decomposition is treated thoroughly since it is relevant for future studies of galaxy structure using next-generation facilities, like the James Webb Space Telescope and the ground-based Giant Magellan Telescope with adaptive optics.

109.99 In Stock
Probing Galaxy Evolution by Unveiling the Structure of Massive Galaxies Across Cosmic Time and in Diverse Environments

Probing Galaxy Evolution by Unveiling the Structure of Massive Galaxies Across Cosmic Time and in Diverse Environments

by Timothy Weinzirl
Probing Galaxy Evolution by Unveiling the Structure of Massive Galaxies Across Cosmic Time and in Diverse Environments

Probing Galaxy Evolution by Unveiling the Structure of Massive Galaxies Across Cosmic Time and in Diverse Environments

by Timothy Weinzirl

Paperback(Softcover reprint of the original 1st ed. 2015)

$109.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
    Not Eligible for Free Shipping
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Awarded the American Astronomical Society (AAS) Rodger Doxsey Travel Prize, and with a foreword by thesis supervisor Professor Shardha Jogee at the University of Texas at Austin, this thesis discusses one of the primary outstanding problems in extragalactic astronomy: how galaxies form and evolve. Galaxies consist of two fundamental kinds of structure: rotationally supported disks and spheroidal/triaxial structures supported by random stellar motions. Understanding the balance between these galaxy components is vital to comprehending the relative importance of the different mechanisms (galaxy collisions, gas accretion and internal secular processes) that assemble and shape galaxies. Using panchromatic imaging from some of the largest and deepest space-based galaxy surveys, an empirical census of galaxy structure is made for galaxies at different cosmic epochs and in environments spanning low to extremely high galaxy number densities. An important result of this work is that disk structures are far more prevalent in massive galaxies than previously thought. The associated challenges raised for contemporary theoretical models of galaxy formation are discussed. The method of galaxy structural decomposition is treated thoroughly since it is relevant for future studies of galaxy structure using next-generation facilities, like the James Webb Space Telescope and the ground-based Giant Magellan Telescope with adaptive optics.


Product Details

ISBN-13: 9783319377810
Publisher: Springer International Publishing
Publication date: 08/01/2015
Series: Springer Theses
Edition description: Softcover reprint of the original 1st ed. 2015
Pages: 236
Product dimensions: 6.10(w) x 9.25(h) x 0.02(d)

About the Author

After earning Bachelor of Science degrees in Physics and Astronomy at Drake University in Des Moines, IA, Dr. Tim Weinzirl came to the University of Texas at Austin to pursue graduate studies in Astronomy. While in graduate school, his research earned awards including the Rodger Doxsey Travel prize from the American Astronomical Society as well as the Outstanding Master's Thesis award from the College of Natural Sciences at the University of Texas at Austin. Dr. Weinzirl completed his PhD in Astronomy in August 2013.

Table of Contents

Introduction.- Probing the Structure and Assembly of Nearby Field Spirals.- Exploring the Structure and Assembly of Galaxies at the Heart of the Coma Cluster.- Structure and Assembly of the Most Massive Galaxies Present a Few Gyr (z ~ 2 – 3) After the Big Bang.- Summary, Implications and Future Work.
From the B&N Reads Blog

Customer Reviews