Radiative Transfer in Nontransparent, Dispersed Media
Existing standard textbooks on radiative transfer (RT) are usually confined to theoretical models with little reference to experimental methods. This book has been written to illustrate how calorimetric and spectroscopic measurements can be used to check theoretical predictions on extinction properties of infrared radiation in optically thick, absorbing and scattering particulate media. A determination of infrared extinction coefficients is now possible from three completely independent methods. An interpretation of the results of thermal conductivity measurements is made in terms of the diffusion model of RT. One of the most important topics of the book is the experimental separation of heat transfer modes. Since all modes other than scattered radiation are coupled by temperature profiles, conservation of energy also requires an understanding of the non-radiative heat flow components. Unlike other volumes on RT, this book also contains a review of non-radiative heat flow mechanisms. Thus the book does not treat RT as an isolated phenomenon but stresses the key role of RT among the other transport processes. A considerable part of the book is devoted to the calculation of extinction cross sections by application of Mie theory, anisotropic and dependent scattering, optimization of radiation extinction by experimental means, existence or non-existence of thermal conductivity, and other general questions within the field of thermophysics.
1000920955
Radiative Transfer in Nontransparent, Dispersed Media
Existing standard textbooks on radiative transfer (RT) are usually confined to theoretical models with little reference to experimental methods. This book has been written to illustrate how calorimetric and spectroscopic measurements can be used to check theoretical predictions on extinction properties of infrared radiation in optically thick, absorbing and scattering particulate media. A determination of infrared extinction coefficients is now possible from three completely independent methods. An interpretation of the results of thermal conductivity measurements is made in terms of the diffusion model of RT. One of the most important topics of the book is the experimental separation of heat transfer modes. Since all modes other than scattered radiation are coupled by temperature profiles, conservation of energy also requires an understanding of the non-radiative heat flow components. Unlike other volumes on RT, this book also contains a review of non-radiative heat flow mechanisms. Thus the book does not treat RT as an isolated phenomenon but stresses the key role of RT among the other transport processes. A considerable part of the book is devoted to the calculation of extinction cross sections by application of Mie theory, anisotropic and dependent scattering, optimization of radiation extinction by experimental means, existence or non-existence of thermal conductivity, and other general questions within the field of thermophysics.
54.99 In Stock
Radiative Transfer in Nontransparent, Dispersed Media

Radiative Transfer in Nontransparent, Dispersed Media

by Harald Reiss
Radiative Transfer in Nontransparent, Dispersed Media

Radiative Transfer in Nontransparent, Dispersed Media

by Harald Reiss

Paperback(Softcover reprint of the original 1st ed. 1988)

$54.99 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Existing standard textbooks on radiative transfer (RT) are usually confined to theoretical models with little reference to experimental methods. This book has been written to illustrate how calorimetric and spectroscopic measurements can be used to check theoretical predictions on extinction properties of infrared radiation in optically thick, absorbing and scattering particulate media. A determination of infrared extinction coefficients is now possible from three completely independent methods. An interpretation of the results of thermal conductivity measurements is made in terms of the diffusion model of RT. One of the most important topics of the book is the experimental separation of heat transfer modes. Since all modes other than scattered radiation are coupled by temperature profiles, conservation of energy also requires an understanding of the non-radiative heat flow components. Unlike other volumes on RT, this book also contains a review of non-radiative heat flow mechanisms. Thus the book does not treat RT as an isolated phenomenon but stresses the key role of RT among the other transport processes. A considerable part of the book is devoted to the calculation of extinction cross sections by application of Mie theory, anisotropic and dependent scattering, optimization of radiation extinction by experimental means, existence or non-existence of thermal conductivity, and other general questions within the field of thermophysics.

Product Details

ISBN-13: 9783662136591
Publisher: Springer Berlin Heidelberg
Publication date: 03/18/2013
Series: Springer Tracts in Modern Physics , #113
Edition description: Softcover reprint of the original 1st ed. 1988
Pages: 205
Product dimensions: 6.69(w) x 9.61(h) x 0.02(d)

Table of Contents

1. General introduction into the determination of heat flow components.- 2. Quantities needed to formulate the equations of energy conservation and radiative transfer.- 3. Approximate solutions of the equation of transer.- 4. Comparison between measured (calorimetric or spectroscopic) and calculated extinction coefficients.- 5. Measurement of temperature-dependent thermal conductivity and extinction coefficient.- 6. Optimum radiation extinction.- Conclusion.
From the B&N Reads Blog

Customer Reviews