Real Analysis and Probability
Written by one of the best-known probabilists in the world this text offers a clear and modern presentation of modern probability theory and an exposition of the interplay between the properties of metric spaces and those of probability measures. This text is the first at this level to include discussions of the subadditive ergodic theorems, metrics for convergence in laws and the Borel isomorphism theory. The proofs for the theorems are consistently brief and clear and each chapter concludes with a set of historical notes and references. This book should be of interest to students taking degree courses in real analysis and/or probability theory.
1119267689
Real Analysis and Probability
Written by one of the best-known probabilists in the world this text offers a clear and modern presentation of modern probability theory and an exposition of the interplay between the properties of metric spaces and those of probability measures. This text is the first at this level to include discussions of the subadditive ergodic theorems, metrics for convergence in laws and the Borel isomorphism theory. The proofs for the theorems are consistently brief and clear and each chapter concludes with a set of historical notes and references. This book should be of interest to students taking degree courses in real analysis and/or probability theory.
350.0 In Stock
Real Analysis and Probability

Real Analysis and Probability

by R. M. Dudley
Real Analysis and Probability

Real Analysis and Probability

by R. M. Dudley

Hardcover

$350.00 
  • SHIP THIS ITEM
    In stock. Ships in 3-7 days. Typically arrives in 3 weeks.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Written by one of the best-known probabilists in the world this text offers a clear and modern presentation of modern probability theory and an exposition of the interplay between the properties of metric spaces and those of probability measures. This text is the first at this level to include discussions of the subadditive ergodic theorems, metrics for convergence in laws and the Borel isomorphism theory. The proofs for the theorems are consistently brief and clear and each chapter concludes with a set of historical notes and references. This book should be of interest to students taking degree courses in real analysis and/or probability theory.

Product Details

ISBN-13: 9781315897097
Publisher: Taylor & Francis
Publication date: 12/08/2017
Pages: 450
Product dimensions: 6.12(w) x 9.19(h) x (d)

Table of Contents

1. Foundations; Set Theory 2. General Topology 3. Measures 4. Integration 5. Lp Spaces; Introduction to Functional Analysis 6. Convex Sets and Duality of Normed Spaces 7. Measure, Topology, and Differentiation 8. Introduction to Probability Theory 9. Convergence of Laws and Central Limit Theorems 10. Conditional Expectations and Martingales 11. Convergence of Laws on Separable Metric Spaces 12. Stochastic Processes 13. Measurability: Borel Isomorphism and Analytic Sets
From the B&N Reads Blog

Customer Reviews