Reduced Basis Methods for Partial Differential Equations: An Introduction
This book provides a basic introduction to reduced basis (RB) methods for problems involving the repeated solution of partial differential equations (PDEs) arising from engineering and applied sciences, such as PDEs depending on several parameters and PDE-constrained optimization.

The book presents a general mathematical formulation of RB methods, analyzes their fundamental theoretical properties, discusses the related algorithmic and implementation aspects, and highlights their built-in algebraic and geometric structures.

More specifically, the authors discuss alternative strategies for constructing accurate RB spaces using greedy algorithms and proper orthogonal decomposition techniques, investigate their approximation properties and analyze offline-online decomposition strategies aimed at the reduction of computational complexity. Furthermore, they carry out both a priori and a posteriori error analysis.

The whole mathematical presentation is made more stimulating by the use of representative examples of applicative interest in the context of both linear and nonlinear PDEs. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The book will be ideal for upper undergraduate students and, more generally, people interested in scientific computing.

All these pseudocodes are in fact implemented in a MATLAB package that is freely available at https://github.com/redbkit

1120980791
Reduced Basis Methods for Partial Differential Equations: An Introduction
This book provides a basic introduction to reduced basis (RB) methods for problems involving the repeated solution of partial differential equations (PDEs) arising from engineering and applied sciences, such as PDEs depending on several parameters and PDE-constrained optimization.

The book presents a general mathematical formulation of RB methods, analyzes their fundamental theoretical properties, discusses the related algorithmic and implementation aspects, and highlights their built-in algebraic and geometric structures.

More specifically, the authors discuss alternative strategies for constructing accurate RB spaces using greedy algorithms and proper orthogonal decomposition techniques, investigate their approximation properties and analyze offline-online decomposition strategies aimed at the reduction of computational complexity. Furthermore, they carry out both a priori and a posteriori error analysis.

The whole mathematical presentation is made more stimulating by the use of representative examples of applicative interest in the context of both linear and nonlinear PDEs. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The book will be ideal for upper undergraduate students and, more generally, people interested in scientific computing.

All these pseudocodes are in fact implemented in a MATLAB package that is freely available at https://github.com/redbkit

69.99 In Stock
Reduced Basis Methods for Partial Differential Equations: An Introduction

Reduced Basis Methods for Partial Differential Equations: An Introduction

Reduced Basis Methods for Partial Differential Equations: An Introduction

Reduced Basis Methods for Partial Differential Equations: An Introduction

Paperback(1st ed. 2016)

$69.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
    Not Eligible for Free Shipping
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This book provides a basic introduction to reduced basis (RB) methods for problems involving the repeated solution of partial differential equations (PDEs) arising from engineering and applied sciences, such as PDEs depending on several parameters and PDE-constrained optimization.

The book presents a general mathematical formulation of RB methods, analyzes their fundamental theoretical properties, discusses the related algorithmic and implementation aspects, and highlights their built-in algebraic and geometric structures.

More specifically, the authors discuss alternative strategies for constructing accurate RB spaces using greedy algorithms and proper orthogonal decomposition techniques, investigate their approximation properties and analyze offline-online decomposition strategies aimed at the reduction of computational complexity. Furthermore, they carry out both a priori and a posteriori error analysis.

The whole mathematical presentation is made more stimulating by the use of representative examples of applicative interest in the context of both linear and nonlinear PDEs. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The book will be ideal for upper undergraduate students and, more generally, people interested in scientific computing.

All these pseudocodes are in fact implemented in a MATLAB package that is freely available at https://github.com/redbkit


Product Details

ISBN-13: 9783319154305
Publisher: Springer International Publishing
Publication date: 07/27/2015
Series: UNITEXT , #92
Edition description: 1st ed. 2016
Pages: 296
Product dimensions: 6.10(w) x 9.25(h) x (d)

About the Author

Prof. Alfio Quarteroni, Dr. Andrea Manzoni and Federico Negri - Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Table of Contents

1 Introduction.- 2 Representative problems: analysis and (high-fidelity) approximation.- 3 Getting parameters into play.- 4 RB method: basic principle, basic properties.- 5 Construction of reduced basis spaces.- 6 Algebraic and geometrical structure.- 7 RB method in actions.- 8 Extension to nonaffine problems.- 9 Extension to nonlinear problems.- 10 Reduction and control: a natural interplay.- 11 Further extensions.- 12 Appendix A Elements of functional analysis.
From the B&N Reads Blog

Customer Reviews