Reflection Groups and Invariant Theory
Reflection Groups and their invariant theory provide the main themes of this book and the first two parts focus on these topics. The first 13 chapters deal with reflection groups (Coxeter groups and Weyl groups) in Euclidean Space while the next thirteen chapters study the invariant theory of pseudo-reflection groups. The third part of the book studies conjugacy classes of the elements in reflection and pseudo-reflection groups. The book has evolved from various graduate courses given by the author over the past 10 years. It is intended to be a graduate text, accessible to students with a basic background in algebra.

Richard Kane is a professor of mathematics at the University of Western Ontario. His research interests are algebra and algebraic topology. Professor Kane is a former President of the Canadian Mathematical Society.

1101006946
Reflection Groups and Invariant Theory
Reflection Groups and their invariant theory provide the main themes of this book and the first two parts focus on these topics. The first 13 chapters deal with reflection groups (Coxeter groups and Weyl groups) in Euclidean Space while the next thirteen chapters study the invariant theory of pseudo-reflection groups. The third part of the book studies conjugacy classes of the elements in reflection and pseudo-reflection groups. The book has evolved from various graduate courses given by the author over the past 10 years. It is intended to be a graduate text, accessible to students with a basic background in algebra.

Richard Kane is a professor of mathematics at the University of Western Ontario. His research interests are algebra and algebraic topology. Professor Kane is a former President of the Canadian Mathematical Society.

89.99 In Stock
Reflection Groups and Invariant Theory

Reflection Groups and Invariant Theory

by Richard Kane
Reflection Groups and Invariant Theory

Reflection Groups and Invariant Theory

by Richard Kane

Hardcover(2001)

$89.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Reflection Groups and their invariant theory provide the main themes of this book and the first two parts focus on these topics. The first 13 chapters deal with reflection groups (Coxeter groups and Weyl groups) in Euclidean Space while the next thirteen chapters study the invariant theory of pseudo-reflection groups. The third part of the book studies conjugacy classes of the elements in reflection and pseudo-reflection groups. The book has evolved from various graduate courses given by the author over the past 10 years. It is intended to be a graduate text, accessible to students with a basic background in algebra.

Richard Kane is a professor of mathematics at the University of Western Ontario. His research interests are algebra and algebraic topology. Professor Kane is a former President of the Canadian Mathematical Society.


Product Details

ISBN-13: 9780387989792
Publisher: Springer New York
Publication date: 06/21/2001
Series: CMS Books in Mathematics , #5
Edition description: 2001
Pages: 379
Product dimensions: 6.30(w) x 9.45(h) x 0.03(d)

Table of Contents

I Reflection groups.- 1 Euclidean reflection groups.- 2 Root systems.- 3 Fundamental systems.- 4 Length.- 5 Parabolic subgroups.- II Coxeter groups.- 6 Reflection groups and Coxeter systems.- 7 Bilinear forms of Coxeter systems.- 8 Classification of Coxeter systems and reflection groups.- III Weyl groups.- 9 Weyl groups.- 10 The Classification of crystallographic root systems.- 11 Affine Weyl groups.- 12 Subroot systems.- 13 Formal identities.- IV Pseudo-reflection groups.- 14 Pseudo-reflections.- 15 Classifications of pseudo-reflection groups.- V Rings of invariants.- 16 The ring of invariants.- 17 Poincaré series.- 18 Nonmodular invariants of pseudo-reflection groups.- 19 Modular invariants of pseudo-reflection groups.- VI Skew invariants.- 20 Skew invariants.- 21 The Jacobian.- 22 The extended ring of invariants.- VII Rings of covariants.- 23 Poincaré series for the ring of covariants.- 24 Representations of pseudo-reflection groups.- 25 Harmonic elements.- 26 Harmonics and reflection groups.- VIII Conjugacy classes.- 27 Involutions.- 28 Elementary equivalences.- 29 Coxeter elements.- 30 Minimal decompositions.- IX Eigenvalues.- 31 Eigenvalues for reflection groups.- 32 Eigenvalues for regular elements.- 33 Ring of invariants and eigenvalues.- 34 Properties of regular elements.- Appendices.- A Rings and modules.- B Group actions and representation theory.- C Quadratic forms.- D Lie algebras.- References.
From the B&N Reads Blog

Customer Reviews