Relational Data Mining
As the first book devoted to relational data mining, this coherently written multi-author monograph provides a thorough introduction and systematic overview of the area. The first part introduces the reader to the basics and principles of classical knowledge discovery in databases and inductive logic programming; subsequent chapters by leading experts assess the techniques in relational data mining in a principled and comprehensive way; finally, three chapters deal with advanced applications in various fields and refer the reader to resources for relational data mining.

This book will become a valuable source of reference for R&D professionals active in relational data mining. Students as well as IT professionals and ambitioned practitioners interested in learning about relational data mining will appreciate the book as a useful text and gentle introduction to this exciting new field.

1101508477
Relational Data Mining
As the first book devoted to relational data mining, this coherently written multi-author monograph provides a thorough introduction and systematic overview of the area. The first part introduces the reader to the basics and principles of classical knowledge discovery in databases and inductive logic programming; subsequent chapters by leading experts assess the techniques in relational data mining in a principled and comprehensive way; finally, three chapters deal with advanced applications in various fields and refer the reader to resources for relational data mining.

This book will become a valuable source of reference for R&D professionals active in relational data mining. Students as well as IT professionals and ambitioned practitioners interested in learning about relational data mining will appreciate the book as a useful text and gentle introduction to this exciting new field.

109.99 In Stock
Relational Data Mining

Relational Data Mining

Relational Data Mining

Relational Data Mining

Paperback(Softcover reprint of hardcover 1st ed. 2001)

$109.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

As the first book devoted to relational data mining, this coherently written multi-author monograph provides a thorough introduction and systematic overview of the area. The first part introduces the reader to the basics and principles of classical knowledge discovery in databases and inductive logic programming; subsequent chapters by leading experts assess the techniques in relational data mining in a principled and comprehensive way; finally, three chapters deal with advanced applications in various fields and refer the reader to resources for relational data mining.

This book will become a valuable source of reference for R&D professionals active in relational data mining. Students as well as IT professionals and ambitioned practitioners interested in learning about relational data mining will appreciate the book as a useful text and gentle introduction to this exciting new field.


Product Details

ISBN-13: 9783642076046
Publisher: Springer Berlin Heidelberg
Publication date: 12/10/2010
Edition description: Softcover reprint of hardcover 1st ed. 2001
Pages: 398
Product dimensions: 6.10(w) x 9.25(h) x 0.24(d)

Table of Contents

I. Introduction.- 1. Data Mining in a Nutshell.- 2. Knowledge Discovery in Databases: An Overview.- 3. An Introduction to Inductive Logic Programming.- 4. Inductive Logic Programming for Knowledge Discovery in Databases.- II. Techniques.- 5. Three Companions for Data Mining in First Order Logic.- 6. Inducing Classification and Regression Trees in First Order Logic.- 7. Relational Rule Induction with CProgol4.4: A Tutorial Introduction.- 8. Discovery of Relational Association Rules.- 9. Distance Based Approaches to Relational Learning and Clustering.- III. From Propositional to Relational Data Mining.- 10. How to Upgrade Propositional Learners to First Order Logic: A Case Study.- 11. Propositionalization Approaches to Relational Data Mining.- 12. Relational Learning and Boosting.- 13. Learning Probabilistic Relational Models.- IV. Applications and Web Resources.- 14. Relational Data Mining Applications: An Overview.- 15. Four Suggestions and a Rule Concerning the Application of ILP.- 16. Internet Resources on ILP for KDD.- Author Index.
From the B&N Reads Blog

Customer Reviews