Renewal Theory for Perturbed Random Walks and Similar Processes
This book offers a detailed review of perturbed random walks, perpetuities, and random processes with immigration. Being of major importance in modern probability theory, both theoretical and applied, these objects have been used to model various phenomena in the natural sciences as well as in insurance and finance. The book also presents the many significant results and efficient techniques and methods that have been worked out in the last decade.

The first chapter is devoted to perturbed random walks and discusses their asymptotic behavior and various functionals pertaining to them, including supremum and first-passage time. The second chapter examines perpetuities, presenting results on continuity of their distributions and the existence of moments, as well as weak convergence of divergent perpetuities. Focusing on random processes with immigration, the third chapter investigates the existence of moments, describes long-time behavior and discusses limit theorems, both withand without scaling. Chapters four and five address branching random walks and the Bernoulli sieve, respectively, and their connection to the results of the previous chapters.

With many motivating examples, this book appeals to both theoretical and applied probabilists.

1133671788
Renewal Theory for Perturbed Random Walks and Similar Processes
This book offers a detailed review of perturbed random walks, perpetuities, and random processes with immigration. Being of major importance in modern probability theory, both theoretical and applied, these objects have been used to model various phenomena in the natural sciences as well as in insurance and finance. The book also presents the many significant results and efficient techniques and methods that have been worked out in the last decade.

The first chapter is devoted to perturbed random walks and discusses their asymptotic behavior and various functionals pertaining to them, including supremum and first-passage time. The second chapter examines perpetuities, presenting results on continuity of their distributions and the existence of moments, as well as weak convergence of divergent perpetuities. Focusing on random processes with immigration, the third chapter investigates the existence of moments, describes long-time behavior and discusses limit theorems, both withand without scaling. Chapters four and five address branching random walks and the Bernoulli sieve, respectively, and their connection to the results of the previous chapters.

With many motivating examples, this book appeals to both theoretical and applied probabilists.

109.99 In Stock
Renewal Theory for Perturbed Random Walks and Similar Processes

Renewal Theory for Perturbed Random Walks and Similar Processes

by Alexander Iksanov
Renewal Theory for Perturbed Random Walks and Similar Processes

Renewal Theory for Perturbed Random Walks and Similar Processes

by Alexander Iksanov

Paperback(Softcover reprint of the original 1st ed. 2016)

$109.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This book offers a detailed review of perturbed random walks, perpetuities, and random processes with immigration. Being of major importance in modern probability theory, both theoretical and applied, these objects have been used to model various phenomena in the natural sciences as well as in insurance and finance. The book also presents the many significant results and efficient techniques and methods that have been worked out in the last decade.

The first chapter is devoted to perturbed random walks and discusses their asymptotic behavior and various functionals pertaining to them, including supremum and first-passage time. The second chapter examines perpetuities, presenting results on continuity of their distributions and the existence of moments, as well as weak convergence of divergent perpetuities. Focusing on random processes with immigration, the third chapter investigates the existence of moments, describes long-time behavior and discusses limit theorems, both withand without scaling. Chapters four and five address branching random walks and the Bernoulli sieve, respectively, and their connection to the results of the previous chapters.

With many motivating examples, this book appeals to both theoretical and applied probabilists.


Product Details

ISBN-13: 9783319840857
Publisher: Springer International Publishing
Publication date: 05/02/2018
Series: Probability and Its Applications
Edition description: Softcover reprint of the original 1st ed. 2016
Pages: 250
Product dimensions: 6.10(w) x 9.25(h) x (d)

Table of Contents

Preface.- Perturbed random walks.- Affine recurrences.- Random processes with immigration.- Application to branching random walk.- Application to the Bernoulli sieve.- Appendix.- Bibliography.
From the B&N Reads Blog

Customer Reviews