Riemannian Geometry of Contact and Symplectic Manifolds
This second edition, divided into fourteen chapters, presents a comprehensive treatment of contact and symplectic manifolds from the Riemannian point of view. The monograph examines the basic ideas in detail and provides many illustrative examples for the reader.

Riemannian Geometry of Contact and Symplectic Manifolds, Second Edition provides new material in most chapters, but a particular emphasis remains on contact manifolds. New principal topics include a complex geodesic flow and the accompanying geometry of the projectivized holomorphic tangent bundle and a complex version of the special directions discussed in Chapter 11 for the real case. Both of these topics make use of Étienne Ghys's attractive notion of a holomorphic Anosov flow.

Researchers, mathematicians, and graduate students in contact and symplectic manifold theory and in Riemannian geometry will benefit from this work. A basic course in Riemannian geometry is a prerequisite.

Reviews from the First Edition:

"The book . . . can be used either as an introduction to the subject or as a reference for students and researchers . . . [it] gives a clear and complete account of the main ideas . . . and studies a vast amount of related subjects such as integral sub-manifolds, symplectic structure of tangent bundles, curvature of contact metric manifolds and curvature functionals on spaces of associated metrics." —Mathematical Reviews

"…this is a pleasant and useful book and all geometers will profit [from] reading it. They can use it for advanced courses, for thesis topics as well as for references. Beginners will find in it an attractive [table of] contents and useful ideas for pursuing their studies." —Memoriile Sectiilor Stiintifice

1139935883
Riemannian Geometry of Contact and Symplectic Manifolds
This second edition, divided into fourteen chapters, presents a comprehensive treatment of contact and symplectic manifolds from the Riemannian point of view. The monograph examines the basic ideas in detail and provides many illustrative examples for the reader.

Riemannian Geometry of Contact and Symplectic Manifolds, Second Edition provides new material in most chapters, but a particular emphasis remains on contact manifolds. New principal topics include a complex geodesic flow and the accompanying geometry of the projectivized holomorphic tangent bundle and a complex version of the special directions discussed in Chapter 11 for the real case. Both of these topics make use of Étienne Ghys's attractive notion of a holomorphic Anosov flow.

Researchers, mathematicians, and graduate students in contact and symplectic manifold theory and in Riemannian geometry will benefit from this work. A basic course in Riemannian geometry is a prerequisite.

Reviews from the First Edition:

"The book . . . can be used either as an introduction to the subject or as a reference for students and researchers . . . [it] gives a clear and complete account of the main ideas . . . and studies a vast amount of related subjects such as integral sub-manifolds, symplectic structure of tangent bundles, curvature of contact metric manifolds and curvature functionals on spaces of associated metrics." —Mathematical Reviews

"…this is a pleasant and useful book and all geometers will profit [from] reading it. They can use it for advanced courses, for thesis topics as well as for references. Beginners will find in it an attractive [table of] contents and useful ideas for pursuing their studies." —Memoriile Sectiilor Stiintifice

199.99 In Stock
Riemannian Geometry of Contact and Symplectic Manifolds

Riemannian Geometry of Contact and Symplectic Manifolds

by David E. Blair
Riemannian Geometry of Contact and Symplectic Manifolds

Riemannian Geometry of Contact and Symplectic Manifolds

by David E. Blair

Hardcover(2nd ed. 2010)

$199.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This second edition, divided into fourteen chapters, presents a comprehensive treatment of contact and symplectic manifolds from the Riemannian point of view. The monograph examines the basic ideas in detail and provides many illustrative examples for the reader.

Riemannian Geometry of Contact and Symplectic Manifolds, Second Edition provides new material in most chapters, but a particular emphasis remains on contact manifolds. New principal topics include a complex geodesic flow and the accompanying geometry of the projectivized holomorphic tangent bundle and a complex version of the special directions discussed in Chapter 11 for the real case. Both of these topics make use of Étienne Ghys's attractive notion of a holomorphic Anosov flow.

Researchers, mathematicians, and graduate students in contact and symplectic manifold theory and in Riemannian geometry will benefit from this work. A basic course in Riemannian geometry is a prerequisite.

Reviews from the First Edition:

"The book . . . can be used either as an introduction to the subject or as a reference for students and researchers . . . [it] gives a clear and complete account of the main ideas . . . and studies a vast amount of related subjects such as integral sub-manifolds, symplectic structure of tangent bundles, curvature of contact metric manifolds and curvature functionals on spaces of associated metrics." —Mathematical Reviews

"…this is a pleasant and useful book and all geometers will profit [from] reading it. They can use it for advanced courses, for thesis topics as well as for references. Beginners will find in it an attractive [table of] contents and useful ideas for pursuing their studies." —Memoriile Sectiilor Stiintifice


Product Details

ISBN-13: 9780817649586
Publisher: Birkhäuser Boston
Publication date: 08/25/2010
Series: Progress in Mathematics , #203
Edition description: 2nd ed. 2010
Pages: 343
Product dimensions: 6.10(w) x 9.25(h) x 0.03(d)

Table of Contents

Symplectic Manifolds.- Principal S 1-bundles.- Contact Manifolds.- Associated Metrics.- Integral Submanifolds and Contact Transformations.- Sasakian and Cosymplectic Manifolds.- Curvature of Contact Metric Manifolds.- Submanifolds of Kähler and Sasakian Manifolds.- Tangent Bundles and Tangent Sphere Bundles.- Curvature Functionals on Spaces of Associated Metrics.- Negative—–sectional Curvature.- Complex Contact Manifolds.- Additional Topics in Complex Geometry.- 3-Sasakian Manifolds.- Erratum.
From the B&N Reads Blog

Customer Reviews