RNA-seq Data Analysis: A Practical Approach
The State of the Art in Transcriptome Analysis RNA sequencing (RNA-seq) data offers unprecedented information about the transcriptome, but harnessing this information with bioinformatics tools is typically a bottleneck. RNA-seq Data Analysis: A Practical Approach enables researchers to examine differential expression at gene, exon, and transcript levels and to discover novel genes, transcripts, and whole transcriptomes.

Balanced Coverage of Theory and Practice.Each chapter starts with theoretical background, followed by descriptions of relevant analysis tools and practical examples. Accessible to both bioinformaticians and nonprogramming wet lab scientists, the examples illustrate the use of command-line tools, R, and other open source tools, such as the graphical Chipster software.

The Tools and Methods to Get Started in Your Lab. Taking readers through the whole data analysis workflow, this self-contained guide provides a detailed overview of the main RNA-seq data analysis methods and explains how to use them in practice. It is suitable for researchers from a wide variety of backgrounds, including biology, medicine, genetics, and computer science. The book can also be used in a graduate or advanced undergraduate course.

1133774504
RNA-seq Data Analysis: A Practical Approach
The State of the Art in Transcriptome Analysis RNA sequencing (RNA-seq) data offers unprecedented information about the transcriptome, but harnessing this information with bioinformatics tools is typically a bottleneck. RNA-seq Data Analysis: A Practical Approach enables researchers to examine differential expression at gene, exon, and transcript levels and to discover novel genes, transcripts, and whole transcriptomes.

Balanced Coverage of Theory and Practice.Each chapter starts with theoretical background, followed by descriptions of relevant analysis tools and practical examples. Accessible to both bioinformaticians and nonprogramming wet lab scientists, the examples illustrate the use of command-line tools, R, and other open source tools, such as the graphical Chipster software.

The Tools and Methods to Get Started in Your Lab. Taking readers through the whole data analysis workflow, this self-contained guide provides a detailed overview of the main RNA-seq data analysis methods and explains how to use them in practice. It is suitable for researchers from a wide variety of backgrounds, including biology, medicine, genetics, and computer science. The book can also be used in a graduate or advanced undergraduate course.

86.99 Out Of Stock
RNA-seq Data Analysis: A Practical Approach

RNA-seq Data Analysis: A Practical Approach

RNA-seq Data Analysis: A Practical Approach

RNA-seq Data Analysis: A Practical Approach

Hardcover

$86.99 
  • SHIP THIS ITEM
    Temporarily Out of Stock Online
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

The State of the Art in Transcriptome Analysis RNA sequencing (RNA-seq) data offers unprecedented information about the transcriptome, but harnessing this information with bioinformatics tools is typically a bottleneck. RNA-seq Data Analysis: A Practical Approach enables researchers to examine differential expression at gene, exon, and transcript levels and to discover novel genes, transcripts, and whole transcriptomes.

Balanced Coverage of Theory and Practice.Each chapter starts with theoretical background, followed by descriptions of relevant analysis tools and practical examples. Accessible to both bioinformaticians and nonprogramming wet lab scientists, the examples illustrate the use of command-line tools, R, and other open source tools, such as the graphical Chipster software.

The Tools and Methods to Get Started in Your Lab. Taking readers through the whole data analysis workflow, this self-contained guide provides a detailed overview of the main RNA-seq data analysis methods and explains how to use them in practice. It is suitable for researchers from a wide variety of backgrounds, including biology, medicine, genetics, and computer science. The book can also be used in a graduate or advanced undergraduate course.


Product Details

ISBN-13: 9781466595002
Publisher: Taylor & Francis
Publication date: 09/19/2014
Series: Chapman & Hall/CRC Computational Biology Series , #57
Pages: 324
Product dimensions: 6.30(w) x 9.30(h) x 0.80(d)

About the Author

Eija Korpelainen, Jarno Tuimala, Panu Somervuo, Mikael Huss, Garry Wong

Table of Contents

Introduction. Quality Control. Mapping, and Assembly. Differential Expression. Analysis of Small Non-Coding RNAs.

From the B&N Reads Blog

Customer Reviews