Robot Vision: Second International Workshop, RobVis 2008, Auckland, New Zealand, February 18-20, 2008, Proceedings
In 1986, B.K.P. Horn published a book entitled Robot Vision, which actually discussed a wider field of subjects, basically addressing the field of computer vision, but introducing “robot vision” as a technical term. Since then, the - teraction between computer vision and research on mobile systems (often called “robots”, e.g., in an industrial context, but also including vehicles, such as cars, wheelchairs, tower cranes, and so forth) established a diverse area of research, today known as robot vision. Robot vision (or, more general, robotics) is a fast-growing discipline, already taught as a dedicated teaching program at university level. The term “robot vision” addresses any autonomous behavior of a technical system supported by visual sensoric information. While robot vision focusses on the vision process, visual robotics is more directed toward control and automatization. In practice, however, both fields strongly interact. Robot Vision 2008 was the second international workshop, counting a 2001 workshop with identical name as the first in this series. Both workshops were organized in close cooperation between researchers from New Zealand and Germany, and took place at The University of Auckland, New Zealand. Participants of the 2008 workshop came from Europe, USA, South America, the Middle East, the Far East, Australia, and of course from New Zealand.
1103133073
Robot Vision: Second International Workshop, RobVis 2008, Auckland, New Zealand, February 18-20, 2008, Proceedings
In 1986, B.K.P. Horn published a book entitled Robot Vision, which actually discussed a wider field of subjects, basically addressing the field of computer vision, but introducing “robot vision” as a technical term. Since then, the - teraction between computer vision and research on mobile systems (often called “robots”, e.g., in an industrial context, but also including vehicles, such as cars, wheelchairs, tower cranes, and so forth) established a diverse area of research, today known as robot vision. Robot vision (or, more general, robotics) is a fast-growing discipline, already taught as a dedicated teaching program at university level. The term “robot vision” addresses any autonomous behavior of a technical system supported by visual sensoric information. While robot vision focusses on the vision process, visual robotics is more directed toward control and automatization. In practice, however, both fields strongly interact. Robot Vision 2008 was the second international workshop, counting a 2001 workshop with identical name as the first in this series. Both workshops were organized in close cooperation between researchers from New Zealand and Germany, and took place at The University of Auckland, New Zealand. Participants of the 2008 workshop came from Europe, USA, South America, the Middle East, the Far East, Australia, and of course from New Zealand.
54.99 In Stock
Robot Vision: Second International Workshop, RobVis 2008, Auckland, New Zealand, February 18-20, 2008, Proceedings

Robot Vision: Second International Workshop, RobVis 2008, Auckland, New Zealand, February 18-20, 2008, Proceedings

Robot Vision: Second International Workshop, RobVis 2008, Auckland, New Zealand, February 18-20, 2008, Proceedings

Robot Vision: Second International Workshop, RobVis 2008, Auckland, New Zealand, February 18-20, 2008, Proceedings

Paperback(2008)

$54.99 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Related collections and offers


Overview

In 1986, B.K.P. Horn published a book entitled Robot Vision, which actually discussed a wider field of subjects, basically addressing the field of computer vision, but introducing “robot vision” as a technical term. Since then, the - teraction between computer vision and research on mobile systems (often called “robots”, e.g., in an industrial context, but also including vehicles, such as cars, wheelchairs, tower cranes, and so forth) established a diverse area of research, today known as robot vision. Robot vision (or, more general, robotics) is a fast-growing discipline, already taught as a dedicated teaching program at university level. The term “robot vision” addresses any autonomous behavior of a technical system supported by visual sensoric information. While robot vision focusses on the vision process, visual robotics is more directed toward control and automatization. In practice, however, both fields strongly interact. Robot Vision 2008 was the second international workshop, counting a 2001 workshop with identical name as the first in this series. Both workshops were organized in close cooperation between researchers from New Zealand and Germany, and took place at The University of Auckland, New Zealand. Participants of the 2008 workshop came from Europe, USA, South America, the Middle East, the Far East, Australia, and of course from New Zealand.

Product Details

ISBN-13: 9783540781561
Publisher: Springer Berlin Heidelberg
Publication date: 03/11/2008
Series: Lecture Notes in Computer Science , #4931
Edition description: 2008
Pages: 472
Product dimensions: 6.10(w) x 9.10(h) x 1.10(d)

Table of Contents

Motion Analysis.- Dynamic Multiresolution Optical Flow Computation.- Particle-Based Belief Propagation for Structure from Motion and Dense Stereo Vision with Unknown Camera Constraints.- Stereo Vision.- Integrating Disparity Images by Incorporating Disparity Rate.- Towards Optimal Stereo Analysis of Image Sequences.- Fast Line-Segment Extraction for Semi-dense Stereo Matching.- High Resolution Stereo in Real Time.- Robot Vision.- Shastically Optimal Epipole Estimation in Omnidirectional Images with Geometric Algebra.- Modeling and Tracking Line-Constrained Mechanical Systems.- Stereo Vision Local Map Alignment for Robot Environment Mapping.- Markerless Augmented Reality for Robotic Helicoptor Applications.- Facial Expression Recognition for Human-Robot Interaction – A Prototype.- Computer Vision.- Iterative Low Complexity Factorization for Projective Reconstruction.- Accurate Image Matching in Scenes Including Repetitive Patterns.- Camera Self-calibration under the Constraint of Distant Plane.- Visual Inspection.- An Approximate Algorithm for Solving the Watchman Route Problem.- Bird’s-Eye View Vision System for Vehicle Surrounding Monitoring.- Road-Signs Recognition System for Intelligent Vehicles.- Situation Analysis and Atypical Event Detection with Multiple Cameras and Multi-Object Tracking.- Urban Vision.- Team AnnieWAY’s Autonomous System.- The Area Processing Unit of Caroline - Finding the Way through DARPA’s Urban Challenge.- Sensor Architecture and Data Fusion for Robotic Perception in Urban Environments at the 2007 DARPA Urban Challenge.- Poster Session.- Belief-Propagation on Edge Images for Stereo Analysis of Image Sequences.- Real-Time Hand and Eye Coordination for Flexible Impedance Control of Robot Manipulator.- MFC - A Modular Line Camera for3D World Modulling.- 3D Person Tracking with a Color-Based Particle Filter.- Terrain-Based Sensor Selection for Autonomous Trail Following.- Generic Object Recognition Using Boosted Combined Features.- Stereo Vision Based Self-localization of Autonomous Mobile Robots.- Robust Ellipsoidal Model Fitting of Human Heads.- Hierarchical Fuzzy State Controller for Robot Vision.- A New Camera Calibration Algorithm Based on Rotating Object.- Visual Navigation of Mobile Robot Using Optical Flow and Visual Potential Field.- Behavior Based Robot Localisation Using Stereo Vision.- Direct Pose Estimation with a Monocular Camera.- Differential Geometry of Monogenic Signal Representations.
From the B&N Reads Blog

Customer Reviews