This book aims at introducing Robust Explainable AI, a rapidly growing field whose focus is to ensure that explanations for machine learning models adhere to the highest robustness standards. We will introduce the most important concepts, methodologies, and results in the field, with a particular focus on techniques developed for feature attribution methods and counterfactual explanations for deep neural networks.
As prerequisites, a certain familiarity with neural networks and approaches within XAI is desirable but not mandatory. The book is designed to be self-contained, and relevant concepts will be introduced when needed, together with examples to ensure a successful learning experience.
This book aims at introducing Robust Explainable AI, a rapidly growing field whose focus is to ensure that explanations for machine learning models adhere to the highest robustness standards. We will introduce the most important concepts, methodologies, and results in the field, with a particular focus on techniques developed for feature attribution methods and counterfactual explanations for deep neural networks.
As prerequisites, a certain familiarity with neural networks and approaches within XAI is desirable but not mandatory. The book is designed to be self-contained, and relevant concepts will be introduced when needed, together with examples to ensure a successful learning experience.

Robust Explainable AI
71
Robust Explainable AI
71Product Details
ISBN-13: | 9783031890215 |
---|---|
Publisher: | Springer Nature Switzerland |
Publication date: | 05/25/2025 |
Series: | SpringerBriefs in Intelligent Systems |
Pages: | 71 |
Product dimensions: | 6.10(w) x 9.25(h) x (d) |