Robust Linear Controller Design for Attitude Control of a Rocket
Attitude control of the rocket is a big challenge in real-time. To make the rocket stable against the influences, this book has examined the control technology such as proportional integral derivative control using an anti-windup mechanism and linear quadratic regulator theory based on the degree of freedom mathematical model. The transient behaviour of both controllers is not smooth and takes more time to settle in the defined location. Specific to the deficiencies of PID and LQR, the proportional integral derivative controller is combined with a fuzzy logic controller to overcome the defects of PID and LQR. In conclusion, this book compares the performance analysis of fuzzy-PID controllers with linear quadratic regulators and proportional integral derivative controllers. The simulation results indicate that the hybrid fuzzy-PID controller has a remarkable improvement in terms of overshoot and settling time besides reducing steady-state error. The proposed hybrid fuzzy-PID controller eliminates the overshoot completely and produces enormous stability for the rocket engine.
1144878512
Robust Linear Controller Design for Attitude Control of a Rocket
Attitude control of the rocket is a big challenge in real-time. To make the rocket stable against the influences, this book has examined the control technology such as proportional integral derivative control using an anti-windup mechanism and linear quadratic regulator theory based on the degree of freedom mathematical model. The transient behaviour of both controllers is not smooth and takes more time to settle in the defined location. Specific to the deficiencies of PID and LQR, the proportional integral derivative controller is combined with a fuzzy logic controller to overcome the defects of PID and LQR. In conclusion, this book compares the performance analysis of fuzzy-PID controllers with linear quadratic regulators and proportional integral derivative controllers. The simulation results indicate that the hybrid fuzzy-PID controller has a remarkable improvement in terms of overshoot and settling time besides reducing steady-state error. The proposed hybrid fuzzy-PID controller eliminates the overshoot completely and produces enormous stability for the rocket engine.
86.0 In Stock
Robust Linear Controller Design for Attitude Control of a Rocket

Robust Linear Controller Design for Attitude Control of a Rocket

by Sumathi R
Robust Linear Controller Design for Attitude Control of a Rocket

Robust Linear Controller Design for Attitude Control of a Rocket

by Sumathi R

Paperback

$86.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Attitude control of the rocket is a big challenge in real-time. To make the rocket stable against the influences, this book has examined the control technology such as proportional integral derivative control using an anti-windup mechanism and linear quadratic regulator theory based on the degree of freedom mathematical model. The transient behaviour of both controllers is not smooth and takes more time to settle in the defined location. Specific to the deficiencies of PID and LQR, the proportional integral derivative controller is combined with a fuzzy logic controller to overcome the defects of PID and LQR. In conclusion, this book compares the performance analysis of fuzzy-PID controllers with linear quadratic regulators and proportional integral derivative controllers. The simulation results indicate that the hybrid fuzzy-PID controller has a remarkable improvement in terms of overshoot and settling time besides reducing steady-state error. The proposed hybrid fuzzy-PID controller eliminates the overshoot completely and produces enormous stability for the rocket engine.

Product Details

ISBN-13: 9786207459018
Publisher: LAP Lambert Academic Publishing
Publication date: 01/18/2024
Pages: 168
Product dimensions: 6.00(w) x 9.00(h) x 0.39(d)
From the B&N Reads Blog

Customer Reviews