Scalable Algorithms for Data and Network Analysis
In the age of Big Data, efficient algorithms are in higher demand more than ever before. While Big Data takes us into the asymptotic world envisioned by our pioneers, it also challenges the classical notion of efficient algorithms: Algorithms that used to be considered efficient, according to polynomial-time characterization, may no longer be adequate for solving today's problems. It is not just desirable but essential that efficient algorithms should be scalable. In other words, their complexity should be nearly linear or sub-linear with respect to the problem size. Thus, scalability, not just polynomial-time computability, should be elevated as the central complexity notion for characterizing efficient computation. Scalable Algorithms for Data and Network Analysis surveys a family of algorithmic techniques for the design of scalable algorithms. These techniques include local network exploration, advanced sampling, sparsification, and geometric partitioning. They also include spectral graph-theoretical methods, such as are used for computing electrical flows and sampling from Gaussian Markov random fields. These methods exemplify the fusion of combinatorial, numerical, and statistical thinking in network analysis. Scalable Algorithms for Data and Network Analysis illustrates the use of these techniques by a few basic problems that are fundamental in analyzing network data, particularly for the identification of significant nodes and coherent clusters/communities in social and information networks. It also discusses some frameworks beyond graph-theoretical models for studying conceptual questions that arise in network analysis and social influences.
1123871975
Scalable Algorithms for Data and Network Analysis
In the age of Big Data, efficient algorithms are in higher demand more than ever before. While Big Data takes us into the asymptotic world envisioned by our pioneers, it also challenges the classical notion of efficient algorithms: Algorithms that used to be considered efficient, according to polynomial-time characterization, may no longer be adequate for solving today's problems. It is not just desirable but essential that efficient algorithms should be scalable. In other words, their complexity should be nearly linear or sub-linear with respect to the problem size. Thus, scalability, not just polynomial-time computability, should be elevated as the central complexity notion for characterizing efficient computation. Scalable Algorithms for Data and Network Analysis surveys a family of algorithmic techniques for the design of scalable algorithms. These techniques include local network exploration, advanced sampling, sparsification, and geometric partitioning. They also include spectral graph-theoretical methods, such as are used for computing electrical flows and sampling from Gaussian Markov random fields. These methods exemplify the fusion of combinatorial, numerical, and statistical thinking in network analysis. Scalable Algorithms for Data and Network Analysis illustrates the use of these techniques by a few basic problems that are fundamental in analyzing network data, particularly for the identification of significant nodes and coherent clusters/communities in social and information networks. It also discusses some frameworks beyond graph-theoretical models for studying conceptual questions that arise in network analysis and social influences.
99.0 In Stock
Scalable Algorithms for Data and Network Analysis

Scalable Algorithms for Data and Network Analysis

by Shang-Hua Teng
Scalable Algorithms for Data and Network Analysis

Scalable Algorithms for Data and Network Analysis

by Shang-Hua Teng

Paperback

$99.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

In the age of Big Data, efficient algorithms are in higher demand more than ever before. While Big Data takes us into the asymptotic world envisioned by our pioneers, it also challenges the classical notion of efficient algorithms: Algorithms that used to be considered efficient, according to polynomial-time characterization, may no longer be adequate for solving today's problems. It is not just desirable but essential that efficient algorithms should be scalable. In other words, their complexity should be nearly linear or sub-linear with respect to the problem size. Thus, scalability, not just polynomial-time computability, should be elevated as the central complexity notion for characterizing efficient computation. Scalable Algorithms for Data and Network Analysis surveys a family of algorithmic techniques for the design of scalable algorithms. These techniques include local network exploration, advanced sampling, sparsification, and geometric partitioning. They also include spectral graph-theoretical methods, such as are used for computing electrical flows and sampling from Gaussian Markov random fields. These methods exemplify the fusion of combinatorial, numerical, and statistical thinking in network analysis. Scalable Algorithms for Data and Network Analysis illustrates the use of these techniques by a few basic problems that are fundamental in analyzing network data, particularly for the identification of significant nodes and coherent clusters/communities in social and information networks. It also discusses some frameworks beyond graph-theoretical models for studying conceptual questions that arise in network analysis and social influences.

Product Details

ISBN-13: 9781680831306
Publisher: Now Publishers
Publication date: 05/30/2016
Series: Foundations and Trends in Theoretical Computer Science , #33
Pages: 292
Product dimensions: 6.14(w) x 9.21(h) x 0.61(d)

Table of Contents

Preface. Acknowledgements 1: Scalable Algorithms 2: Networks and Data 3: Significant Nodes: Sampling - Making Data Smaller 4: Clustering: Local Exploration of Networks 5: Partitioning: Geometric Techniques for Data Analysis 6: Spectral Similarity: Sparsification - Making Networks Simpler 7: Electrical Flows: Laplacian Paradigm for Network Analysis 8: Remarks and Discussions. References
From the B&N Reads Blog

Customer Reviews