Single Variable Essential Calculus / Edition 2

Single Variable Essential Calculus / Edition 2

by James Stewart
Pub. Date:
Cengage Learning
Select a Purchase Option (New Edition)
  • purchase options
  • purchase options


Single Variable Essential Calculus / Edition 2

This book is for instructors who think that most calculus textbooks are too long. In writing the book, James Stewart asked himself: What is essential for a three-semester calculus course for scientists and engineers? SINGLE VARIABLE ESSENTIAL CALCULUS, Second Edition, offers a concise approach to teaching calculus that focuses on major concepts, and supports those concepts with precise definitions, patient explanations, and carefully graded problems. The book is only 550 pages—two-fifths the size of Stewart's other calculus texts (CALCULUS, Seventh Edition and CALCULUS: EARLY TRANSCENDENTALS, Seventh Edition) and yet it contains almost all of the same topics. The author achieved this relative brevity primarily by condensing the exposition and by putting some of the features on the book's website, Despite the more compact size, the book has a modern flavor, covering technology and incorporating material to promote conceptual understanding, though not as prominently as in Stewart's other books. SINGLE VARIABLE ESSENTIAL CALCULUS features the same attention to detail, eye for innovation, and meticulous accuracy that have made Stewart's textbooks the best-selling calculus texts in the world.

Product Details

ISBN-13: 9781133112761
Publisher: Cengage Learning
Publication date: 03/02/2012
Edition description: New Edition
Pages: 648
Product dimensions: 8.00(w) x 10.00(h) x 1.00(d)

Table of Contents

1. FUNCTIONS AND LIMITS. Functions and Their Representations. A Catalog of Essential Functions. The Limit of a Function. Calculating Limits. Continuity. Limits Involving Infinity. 2. DERIVATIVES. Derivatives and Rates of Change. The Derivative as a Function. Basic Differentiation Formulas. The Product and Quotient Rules. The Chain Rule. Implicit Differentiation. Related Rates. Linear Approximations and Differentials. 3. APPLICATIONS OF DIFFERENTIATION. Maximum and Minimum Values. The Mean Value Theorem. Derivatives and the Shapes of Graphs. Curve Sketching. Optimization Problems. Newton's Method. Antiderivatives. 4. INTEGRALS. Areas and Distances. The Definite Integral. Evaluating Definite Integrals. The Fundamental Theorem of Calculus. The Substitution Rule. 5. INVERSE FUNCTIONS. Inverse Functions. The Natural Logarithmic Function. The Natural Exponential Function. General Logarithmic and Exponential Functions. Exponential Growth and Decay. Inverse Trigonometric Functions. Hyperbolic Functions. Indeterminate Forms and l'Hospital's Rule. 6. TECHNIQUES OF INTEGRATION. Integration by Parts. Trigonometric Integrals and Substitutions. Partial Fractions. Integration with Tables and Computer Algebra Systems. Approximate Integration. Improper Integrals. 7. APPLICATIONS OF INTEGRATION. Areas between Curves. Volumes. Volumes by Cylindrical Shells. Arc Length. Area of a Surface of Revolution. Applications to Physics and Engineering. Differential Equations. 8. SERIES. Sequences. Series. The Integral and Comparison Tests. Other Convergence Tests. Power Series. Representing Functions as Power Series. Taylor and Maclaurin Series. Applications of Taylor Polynomials. 9. PARAMETRIC EQUATIONS AND POLAR COORDINATES. Parametric Curves. Calculus with Parametric Curves. Polar Coordinates. Areas and Lengths in Polar Coordinates. Conic Sections in Polar Coordinates. Appendix A: Trigonometry Appendix B: Proofs Appendix C: Sigma Notation

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews