Singular Semi-Riemannian Geometry
This book is an exposition of "Singular Semi-Riemannian Geometry"- the study of a smooth manifold furnished with a degenerate (singular) metric tensor of arbitrary signature. The main topic of interest is those cases where the metric tensor is assumed to be nondegenerate. In the literature, manifolds with degenerate metric tensors have been studied extrinsically as degenerate submanifolds of semi­ Riemannian manifolds. One major aspect of this book is first to study the intrinsic structure of a manifold with a degenerate metric tensor and then to study it extrinsically by considering it as a degenerate submanifold of a semi-Riemannian manifold. This book is divided into three parts. Part I deals with singular semi­ Riemannian manifolds in four chapters. In Chapter I, the linear algebra of indefinite real inner product spaces is reviewed. In general, properties of certain geometric tensor fields are obtained purely from the algebraic point of view without referring to their geometric origin. Chapter II is devoted to a review of covariant derivative operators in real vector bundles. Chapter III is the main part of this book where, intrinsically, the Koszul connection is introduced and its curvature identities are obtained. In Chapter IV, an application of Chapter III is made to degenerate submanifolds of semi-Riemannian manifolds and Gauss, Codazzi and Ricci equations are obtained. Part II deals with singular Kahler manifolds in four chapters parallel to Part I.
1100054886
Singular Semi-Riemannian Geometry
This book is an exposition of "Singular Semi-Riemannian Geometry"- the study of a smooth manifold furnished with a degenerate (singular) metric tensor of arbitrary signature. The main topic of interest is those cases where the metric tensor is assumed to be nondegenerate. In the literature, manifolds with degenerate metric tensors have been studied extrinsically as degenerate submanifolds of semi­ Riemannian manifolds. One major aspect of this book is first to study the intrinsic structure of a manifold with a degenerate metric tensor and then to study it extrinsically by considering it as a degenerate submanifold of a semi-Riemannian manifold. This book is divided into three parts. Part I deals with singular semi­ Riemannian manifolds in four chapters. In Chapter I, the linear algebra of indefinite real inner product spaces is reviewed. In general, properties of certain geometric tensor fields are obtained purely from the algebraic point of view without referring to their geometric origin. Chapter II is devoted to a review of covariant derivative operators in real vector bundles. Chapter III is the main part of this book where, intrinsically, the Koszul connection is introduced and its curvature identities are obtained. In Chapter IV, an application of Chapter III is made to degenerate submanifolds of semi-Riemannian manifolds and Gauss, Codazzi and Ricci equations are obtained. Part II deals with singular Kahler manifolds in four chapters parallel to Part I.
109.99 In Stock
Singular Semi-Riemannian Geometry

Singular Semi-Riemannian Geometry

by D.N. Kupeli
Singular Semi-Riemannian Geometry

Singular Semi-Riemannian Geometry

by D.N. Kupeli

Paperback(Softcover reprint of hardcover 1st ed. 1996)

$109.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This book is an exposition of "Singular Semi-Riemannian Geometry"- the study of a smooth manifold furnished with a degenerate (singular) metric tensor of arbitrary signature. The main topic of interest is those cases where the metric tensor is assumed to be nondegenerate. In the literature, manifolds with degenerate metric tensors have been studied extrinsically as degenerate submanifolds of semi­ Riemannian manifolds. One major aspect of this book is first to study the intrinsic structure of a manifold with a degenerate metric tensor and then to study it extrinsically by considering it as a degenerate submanifold of a semi-Riemannian manifold. This book is divided into three parts. Part I deals with singular semi­ Riemannian manifolds in four chapters. In Chapter I, the linear algebra of indefinite real inner product spaces is reviewed. In general, properties of certain geometric tensor fields are obtained purely from the algebraic point of view without referring to their geometric origin. Chapter II is devoted to a review of covariant derivative operators in real vector bundles. Chapter III is the main part of this book where, intrinsically, the Koszul connection is introduced and its curvature identities are obtained. In Chapter IV, an application of Chapter III is made to degenerate submanifolds of semi-Riemannian manifolds and Gauss, Codazzi and Ricci equations are obtained. Part II deals with singular Kahler manifolds in four chapters parallel to Part I.

Product Details

ISBN-13: 9789048146895
Publisher: Springer Netherlands
Publication date: 12/06/2010
Series: Mathematics and Its Applications , #366
Edition description: Softcover reprint of hardcover 1st ed. 1996
Pages: 181
Product dimensions: 6.30(w) x 9.45(h) x 0.02(d)

Table of Contents

1 Preliminaries I: The Linear Algebra of Real Inner Product Spaces.- 2 A Review of Covariant Derivative Operators in Real Vector Bundles.- 3 Singular Semi-Riemannian Manifolds.- 4 Semi-Riemannian Submanifolds in Nondegenerate Semi-Riemannian Manifolds.- 5 Preliminaries II: Linear Algebra of Hermitian Inner Product Spaces.- 6 A Review of Covariant Derivative Operators in Complex Vector Bundles.- 7 Singular Kähler Manifolds.- 8 Hermitian Submanifolds of Nondegenerate Kähler Manifolds.- 9 Preliminaries III: Linear Algebra of Quaternionic Inner Product Spaces.- 10 Singular Quaternionic Kähler Manifolds.- 11 Quaternionic Semi-Riemannian Submanifolds of Nondegenerate Quaternionic Kähler Manifolds.
From the B&N Reads Blog

Customer Reviews