Spatially Explicit Hyperparameter Optimization for Neural Networks
Neural networks as the commonly used machine learning algorithms, such as artificial neural networks (ANNs) and convolutional neural networks (CNNs), have been extensively used in the GIScience domain to explore the nonlinear and complex geographic phenomena. However, there are a few studies that investigate the parameter settings of neural networks in GIScience. Moreover, the model performance of neural networks often depends on the parameter setting for a given dataset. Meanwhile, adjusting the parameter configuration of neural networks will increase the overall running time. Therefore, an automated approach is necessary for addressing these limitations in current studies. This book proposes an automated spatially explicit hyperparameter optimization approach to identify optimal or near-optimal parameter settings for neural networks in the GIScience field. Also, the approach improves the computing performance at both model and computing levels. This book is writtenfor researchers of the GIScience field as well as social science subjects.

1139854698
Spatially Explicit Hyperparameter Optimization for Neural Networks
Neural networks as the commonly used machine learning algorithms, such as artificial neural networks (ANNs) and convolutional neural networks (CNNs), have been extensively used in the GIScience domain to explore the nonlinear and complex geographic phenomena. However, there are a few studies that investigate the parameter settings of neural networks in GIScience. Moreover, the model performance of neural networks often depends on the parameter setting for a given dataset. Meanwhile, adjusting the parameter configuration of neural networks will increase the overall running time. Therefore, an automated approach is necessary for addressing these limitations in current studies. This book proposes an automated spatially explicit hyperparameter optimization approach to identify optimal or near-optimal parameter settings for neural networks in the GIScience field. Also, the approach improves the computing performance at both model and computing levels. This book is writtenfor researchers of the GIScience field as well as social science subjects.

159.99 In Stock
Spatially Explicit Hyperparameter Optimization for Neural Networks

Spatially Explicit Hyperparameter Optimization for Neural Networks

by Minrui Zheng
Spatially Explicit Hyperparameter Optimization for Neural Networks

Spatially Explicit Hyperparameter Optimization for Neural Networks

by Minrui Zheng

Hardcover(1st ed. 2021)

$159.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Neural networks as the commonly used machine learning algorithms, such as artificial neural networks (ANNs) and convolutional neural networks (CNNs), have been extensively used in the GIScience domain to explore the nonlinear and complex geographic phenomena. However, there are a few studies that investigate the parameter settings of neural networks in GIScience. Moreover, the model performance of neural networks often depends on the parameter setting for a given dataset. Meanwhile, adjusting the parameter configuration of neural networks will increase the overall running time. Therefore, an automated approach is necessary for addressing these limitations in current studies. This book proposes an automated spatially explicit hyperparameter optimization approach to identify optimal or near-optimal parameter settings for neural networks in the GIScience field. Also, the approach improves the computing performance at both model and computing levels. This book is writtenfor researchers of the GIScience field as well as social science subjects.


Product Details

ISBN-13: 9789811653988
Publisher: Springer Nature Singapore
Publication date: 10/19/2021
Edition description: 1st ed. 2021
Pages: 108
Product dimensions: 6.10(w) x 9.25(h) x (d)

About the Author

Dr. Minrui Zheng is an Associate Professor in the School of Public Administration and Policy at Renmin University of China. She earned her M.S. in mathematical finance and her Ph.D. from the University of North Carolina at Charlotte. She has published over 10 articles in peer-reviewed journals and book chapters, and is a Member of several professional organizations including the American Association of Geographers and the North American Regional Science Council. Her research and teaching interests focus on GIScience, spatial analysis and modeling, machine learning, high-performance and parallel computing, and land change modeling. Her work focuses on using advanced spatial modeling techniques and high-performance and parallel computing to analyze big data-driven spatial problems.

Table of Contents

Chapter 1: Introduction.- Chapter 2: Literature Review.- Chapter 3: Methodology.- Chapter 4: Study I. Hyperparameter optimization of neural network-driven spatial models accelerated using cyber-enabled high-performance computing.- Chapter 5: Study II. Spatially explicit hyperparameter optimization of neural networks accelerated using high-performance computing.- Chapter 6: Study III. An integration of spatially explicit hyperparameter optimization with convolutional neural networks-based spatial models.
From the B&N Reads Blog

Customer Reviews