Support Vector Machines for Pattern Classification
A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation; Covers sparse SVMs, learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning; Explores incremental training based batch training and active-set training methods, and decomposition techniques for linear programming SVMs; Discusses variable selection for support vector regressors.

1100408169
Support Vector Machines for Pattern Classification
A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation; Covers sparse SVMs, learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning; Explores incremental training based batch training and active-set training methods, and decomposition techniques for linear programming SVMs; Discusses variable selection for support vector regressors.

169.99 Out Of Stock
Support Vector Machines for Pattern Classification

Support Vector Machines for Pattern Classification

by Shigeo Abe
Support Vector Machines for Pattern Classification

Support Vector Machines for Pattern Classification

by Shigeo Abe

Paperback(Softcover reprint of hardcover 2nd ed. 2010)

$169.99 
  • SHIP THIS ITEM
    Temporarily Out of Stock Online
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation; Covers sparse SVMs, learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning; Explores incremental training based batch training and active-set training methods, and decomposition techniques for linear programming SVMs; Discusses variable selection for support vector regressors.


Product Details

ISBN-13: 9781447125488
Publisher: Springer London
Publication date: 05/03/2012
Series: Advances in Computer Vision and Pattern Recognition
Edition description: Softcover reprint of hardcover 2nd ed. 2010
Pages: 473
Product dimensions: 6.10(w) x 9.25(h) x 0.04(d)

Table of Contents

Two-Class Support Vector Machines.- Multiclass Support Vector Machines.- Variants of Support Vector Machines.- Training Methods.- Kernel-Based Methods Kernel@Kernel-based method .- Feature Selection and Extraction.- Clustering.- Maximum-Margin Multilayer Neural Networks.- Maximum-Margin Fuzzy Classifiers.- Function Approximation.
From the B&N Reads Blog

Customer Reviews