Symmetries of Spacetimes and Riemannian Manifolds
This book provides an upto date information on metric, connection and curva­ ture symmetries used in geometry and physics. More specifically, we present the characterizations and classifications of Riemannian and Lorentzian manifolds (in particular, the spacetimes of general relativity) admitting metric (i.e., Killing, ho­ mothetic and conformal), connection (i.e., affine conformal and projective) and curvature symmetries. Our approach, in this book, has the following outstanding features: (a) It is the first-ever attempt of a comprehensive collection of the works of a very large number of researchers on all the above mentioned symmetries. (b) We have aimed at bringing together the researchers interested in differential geometry and the mathematical physics of general relativity by giving an invariant as well as the index form of the main formulas and results. (c) Attempt has been made to support several main mathematical results by citing physical example(s) as applied to general relativity. (d) Overall the presentation is self contained, fairly accessible and in some special cases supported by an extensive list of cited references. (e) The material covered should stimulate future research on symmetries. Chapters 1 and 2 contain most of the prerequisites for reading the rest of the book. We present the language of semi-Euclidean spaces, manifolds, their tensor calculus; geometry of null curves, non-degenerate and degenerate (light like) hypersurfaces. All this is described in invariant as well as the index form.
1120068473
Symmetries of Spacetimes and Riemannian Manifolds
This book provides an upto date information on metric, connection and curva­ ture symmetries used in geometry and physics. More specifically, we present the characterizations and classifications of Riemannian and Lorentzian manifolds (in particular, the spacetimes of general relativity) admitting metric (i.e., Killing, ho­ mothetic and conformal), connection (i.e., affine conformal and projective) and curvature symmetries. Our approach, in this book, has the following outstanding features: (a) It is the first-ever attempt of a comprehensive collection of the works of a very large number of researchers on all the above mentioned symmetries. (b) We have aimed at bringing together the researchers interested in differential geometry and the mathematical physics of general relativity by giving an invariant as well as the index form of the main formulas and results. (c) Attempt has been made to support several main mathematical results by citing physical example(s) as applied to general relativity. (d) Overall the presentation is self contained, fairly accessible and in some special cases supported by an extensive list of cited references. (e) The material covered should stimulate future research on symmetries. Chapters 1 and 2 contain most of the prerequisites for reading the rest of the book. We present the language of semi-Euclidean spaces, manifolds, their tensor calculus; geometry of null curves, non-degenerate and degenerate (light like) hypersurfaces. All this is described in invariant as well as the index form.
54.99 In Stock
Symmetries of Spacetimes and Riemannian Manifolds

Symmetries of Spacetimes and Riemannian Manifolds

by Krishan L. Duggal, Ramesh Sharma
Symmetries of Spacetimes and Riemannian Manifolds

Symmetries of Spacetimes and Riemannian Manifolds

by Krishan L. Duggal, Ramesh Sharma

Paperback(Softcover reprint of the original 1st ed. 1999)

$54.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This book provides an upto date information on metric, connection and curva­ ture symmetries used in geometry and physics. More specifically, we present the characterizations and classifications of Riemannian and Lorentzian manifolds (in particular, the spacetimes of general relativity) admitting metric (i.e., Killing, ho­ mothetic and conformal), connection (i.e., affine conformal and projective) and curvature symmetries. Our approach, in this book, has the following outstanding features: (a) It is the first-ever attempt of a comprehensive collection of the works of a very large number of researchers on all the above mentioned symmetries. (b) We have aimed at bringing together the researchers interested in differential geometry and the mathematical physics of general relativity by giving an invariant as well as the index form of the main formulas and results. (c) Attempt has been made to support several main mathematical results by citing physical example(s) as applied to general relativity. (d) Overall the presentation is self contained, fairly accessible and in some special cases supported by an extensive list of cited references. (e) The material covered should stimulate future research on symmetries. Chapters 1 and 2 contain most of the prerequisites for reading the rest of the book. We present the language of semi-Euclidean spaces, manifolds, their tensor calculus; geometry of null curves, non-degenerate and degenerate (light like) hypersurfaces. All this is described in invariant as well as the index form.

Product Details

ISBN-13: 9781461374251
Publisher: Springer US
Publication date: 11/15/2013
Series: Mathematics and Its Applications , #487
Edition description: Softcover reprint of the original 1st ed. 1999
Pages: 218
Product dimensions: 6.10(w) x 9.25(h) x 0.02(d)

Table of Contents

Dedication. Preface. 1. Preliminaries. 2. Semi-Riemannian Manifolds and Hypersurfaces. 3. Lie Derivatives and Symmetry Groups. 4. Spacetimes of General Relativity. 5. Killing and Affine Killing Vector Fields. 6. Homothetic and Conformal Symmetries. 7. Connection and Curvature Symmetries. 8. Symmetry Inheritance. 9. Symmetries of Some Geometric Structures. A: The Petrov Classification. Bibliography. Index.
From the B&N Reads Blog

Customer Reviews