Tables of Bessel Transforms
This material represents a collection of integral tra- forms involving Bessel (or related) functions as kernel. The following types of inversion formulas have been singled out. k I. g(y) = f (x) (xy) 2J (xy) dx J V 0 k I' . f (x) g (y) (xy) 2J (xy) dy J V 0 II. g(y) f(x) (XY) K (xy)dx J v 0 c+ioo k 1 II'. f (x) = g (y) (xy) 2 [Iv (xy) ] I_v(xy)]dy J 27fT c-ioo or also c+ioo k 1 II". f(x) = g (y) (xy) 2Iv (xy) dx J rri oo c-i k III. g(y) f(x) (xy) 2y (xy) dx + J v 0 k III' . f(x) g(y) (xy) "1lv (xy) dy J 0 k IV. g(y) f (x) (xy) "Kv (xy) dx J 0 k g(y) (xy) 2Y (xy)dy IV' - f(x) J v 0 V Preface V. g(y) f(X)Kix(y)dx J 0 -2 -1 sinh (7TX) V'. f(x) 27T x g(y)y Kix(y)dy J 0 21- [r( ] - v)r( + + v)]-1 VI. g(y) . J f (x) (xy) s (xy) dx o, v l- -1 VI' . f(x) 2 [r ( ] - v) r ( + + v) ] - - J -5 (xy)]dy g(y) (XY) [S, v(xy), v 0 [xy) ]dX VII. g(y) f(x)\ J 0 0 VII' - f(x) g(y) \ [(xy) lz]dy f 0 0 with \ (z) o (For notations and definitions see the appendix of this book. ) The transform VII is also known as the divisor transform.
1117338900
Tables of Bessel Transforms
This material represents a collection of integral tra- forms involving Bessel (or related) functions as kernel. The following types of inversion formulas have been singled out. k I. g(y) = f (x) (xy) 2J (xy) dx J V 0 k I' . f (x) g (y) (xy) 2J (xy) dy J V 0 II. g(y) f(x) (XY) K (xy)dx J v 0 c+ioo k 1 II'. f (x) = g (y) (xy) 2 [Iv (xy) ] I_v(xy)]dy J 27fT c-ioo or also c+ioo k 1 II". f(x) = g (y) (xy) 2Iv (xy) dx J rri oo c-i k III. g(y) f(x) (xy) 2y (xy) dx + J v 0 k III' . f(x) g(y) (xy) "1lv (xy) dy J 0 k IV. g(y) f (x) (xy) "Kv (xy) dx J 0 k g(y) (xy) 2Y (xy)dy IV' - f(x) J v 0 V Preface V. g(y) f(X)Kix(y)dx J 0 -2 -1 sinh (7TX) V'. f(x) 27T x g(y)y Kix(y)dy J 0 21- [r( ] - v)r( + + v)]-1 VI. g(y) . J f (x) (xy) s (xy) dx o, v l- -1 VI' . f(x) 2 [r ( ] - v) r ( + + v) ] - - J -5 (xy)]dy g(y) (XY) [S, v(xy), v 0 [xy) ]dX VII. g(y) f(x)\ J 0 0 VII' - f(x) g(y) \ [(xy) lz]dy f 0 0 with \ (z) o (For notations and definitions see the appendix of this book. ) The transform VII is also known as the divisor transform.
54.99 In Stock
Tables of Bessel Transforms

Tables of Bessel Transforms

by F. Oberhettinger
Tables of Bessel Transforms

Tables of Bessel Transforms

by F. Oberhettinger

Paperback(Softcover reprint of the original 1st ed. 1972)

$54.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This material represents a collection of integral tra- forms involving Bessel (or related) functions as kernel. The following types of inversion formulas have been singled out. k I. g(y) = f (x) (xy) 2J (xy) dx J V 0 k I' . f (x) g (y) (xy) 2J (xy) dy J V 0 II. g(y) f(x) (XY) K (xy)dx J v 0 c+ioo k 1 II'. f (x) = g (y) (xy) 2 [Iv (xy) ] I_v(xy)]dy J 27fT c-ioo or also c+ioo k 1 II". f(x) = g (y) (xy) 2Iv (xy) dx J rri oo c-i k III. g(y) f(x) (xy) 2y (xy) dx + J v 0 k III' . f(x) g(y) (xy) "1lv (xy) dy J 0 k IV. g(y) f (x) (xy) "Kv (xy) dx J 0 k g(y) (xy) 2Y (xy)dy IV' - f(x) J v 0 V Preface V. g(y) f(X)Kix(y)dx J 0 -2 -1 sinh (7TX) V'. f(x) 27T x g(y)y Kix(y)dy J 0 21- [r( ] - v)r( + + v)]-1 VI. g(y) . J f (x) (xy) s (xy) dx o, v l- -1 VI' . f(x) 2 [r ( ] - v) r ( + + v) ] - - J -5 (xy)]dy g(y) (XY) [S, v(xy), v 0 [xy) ]dX VII. g(y) f(x)\ J 0 0 VII' - f(x) g(y) \ [(xy) lz]dy f 0 0 with \ (z) o (For notations and definitions see the appendix of this book. ) The transform VII is also known as the divisor transform.

Product Details

ISBN-13: 9783540059974
Publisher: Springer Berlin Heidelberg
Publication date: 12/04/1972
Edition description: Softcover reprint of the original 1st ed. 1972
Pages: 290
Product dimensions: 6.10(w) x 9.25(h) x 0.03(d)

Table of Contents

I. Hankel Transforms.- 1.1 General Formulas.- 1.2 Transforms of Order Zero.- 1.3 Transforms of Order Unity.- Transforms of General Order.- 1.4 Algebraic Functions and Powers with Arbitrary Index.- 1.5 Exponential and Logarithmic Functions.- 1.6 Trigonometric and Inverse Trigonometric Functions.- 1.7 Orthogonal Polynomials.- 1.8 Miscellaneous Functions.- 1.9 Legendre Functions.- 1.10 Bessel Functions of Argument x.- 1.11 Bessel Functions of Other Arguments.- 1.12 Modified Bessel Functions of Argument x.- 1.13 Modified Bessel Functions of Other Arguments.- 1.14 Functions Related to Bessel Functions.- 1.15 Parabolic Cylinder Functions.- 1.16 Whittaker Functions.- 1.17 Gauss’ Hypergeometric Function.- II. Integral Transforms with Modified Bessel Functions as Kernel.- 2.1 General Formulas.- 2.2 Transforms of Order Zero.- Transforms of General Order.- 2.3 Elementary Functions.- 2.4 Higher Transcendental Functions.- III. Integral Transforms with Neumann Functions as Kernel.- 3.1 General Formulas.- 3.2 Transforms of Order Zero.- Transforms of General Order.- 3.3 Elementary Functions.- 3.4 Higher Transcendental Functions.- IV. Integral Transforms with Struve Functions as Kernel.- 4.1 General Formulas.- 4.2 Transforms of Order Zero.- 4.3 Elementary Functions.- 4.4 Higher Transcendental Functions.- V. Kontorovich-Lebedev Transforms.- VI. Transforms with Lommel Functions as Kernel.- VII. Divisor Transforms.- Appendix. List of Notations and Definitions.
From the B&N Reads Blog

Customer Reviews