The Art of Feature Engineering: Essentials for Machine Learning
When machine learning engineers work with data sets, they may find the results aren't as good as they need. Instead of improving the model or collecting more data, they can use the feature engineering process to help improve results by modifying the data's features to better capture the nature of the problem. This practical guide to feature engineering is an essential addition to any data scientist's or machine learning engineer's toolbox, providing new ideas on how to improve the performance of a machine learning solution. Beginning with the basic concepts and techniques, the text builds up to a unique cross-domain approach that spans data on graphs, texts, time series, and images, with fully worked out case studies. Key topics include binning, out-of-fold estimation, feature selection, dimensionality reduction, and encoding variable-length data. The full source code for the case studies is available on a companion website as Python Jupyter notebooks.
1132884141
The Art of Feature Engineering: Essentials for Machine Learning
When machine learning engineers work with data sets, they may find the results aren't as good as they need. Instead of improving the model or collecting more data, they can use the feature engineering process to help improve results by modifying the data's features to better capture the nature of the problem. This practical guide to feature engineering is an essential addition to any data scientist's or machine learning engineer's toolbox, providing new ideas on how to improve the performance of a machine learning solution. Beginning with the basic concepts and techniques, the text builds up to a unique cross-domain approach that spans data on graphs, texts, time series, and images, with fully worked out case studies. Key topics include binning, out-of-fold estimation, feature selection, dimensionality reduction, and encoding variable-length data. The full source code for the case studies is available on a companion website as Python Jupyter notebooks.
59.0 In Stock
The Art of Feature Engineering: Essentials for Machine Learning

The Art of Feature Engineering: Essentials for Machine Learning

by Pablo Duboue
The Art of Feature Engineering: Essentials for Machine Learning

The Art of Feature Engineering: Essentials for Machine Learning

by Pablo Duboue

Paperback

$59.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

When machine learning engineers work with data sets, they may find the results aren't as good as they need. Instead of improving the model or collecting more data, they can use the feature engineering process to help improve results by modifying the data's features to better capture the nature of the problem. This practical guide to feature engineering is an essential addition to any data scientist's or machine learning engineer's toolbox, providing new ideas on how to improve the performance of a machine learning solution. Beginning with the basic concepts and techniques, the text builds up to a unique cross-domain approach that spans data on graphs, texts, time series, and images, with fully worked out case studies. Key topics include binning, out-of-fold estimation, feature selection, dimensionality reduction, and encoding variable-length data. The full source code for the case studies is available on a companion website as Python Jupyter notebooks.

Product Details

ISBN-13: 9781108709385
Publisher: Cambridge University Press
Publication date: 06/25/2020
Pages: 284
Product dimensions: 5.98(w) x 8.98(h) x 0.63(d)

About the Author

Pablo Duboue is Director of Textualization Software Ltd. and is passionate about improving society through technology. He has a Ph.D. in Computer Science from Columbia University and was part of the IBM Watson team that beat the Jeopardy! Champions in 2011. He splits his time between teaching machine learning, doing open research, contributing to free software projects, and consulting for start-ups. He has taught in three different countries and done joint research with more than fifty co-authors. Recent career highlights include a best paper award in the Canadian AI conference industrial track and consulting for a start-up acquired by Intel Corp.

Table of Contents

Part I. Fundamentals: 1. Introduction; 2. Features, combined; 3. Features, expanded; 4. Features, reduced; 5. Advanced topics; Part II. Case Studies: 6. Graph data; 7. Timestamped data; 8. Textual data; 9. Image data; 10. Other domains.
From the B&N Reads Blog

Customer Reviews