The Crustacean Stomatogastric System: A Model for the Study of Central Nervous Systems

The Crustacean Stomatogastric System: A Model for the Study of Central Nervous Systems

Paperback(Softcover reprint of the original 1st ed. 1987)

Choose Expedited Shipping at checkout for guaranteed delivery by Friday, April 26

Product Details

ISBN-13: 9783642715181
Publisher: Springer Berlin Heidelberg
Publication date: 12/10/2011
Edition description: Softcover reprint of the original 1st ed. 1987
Pages: 338
Product dimensions: 6.69(w) x 9.61(h) x 0.03(d)

Table of Contents

1 Functional Anatomy and Behavior.- 1.1 Functional Anatomy.- 1.1.1 Ossicles.- 1.1.2 Musculature.- 1.1.3 Nervous System.- 1.1.4 Ultrastructure and Neuronal Morphology.- 1.2 Behavior.- 1.2.1 Cardiac Sac.- 1.2.2 Gastric Mill.- 1.2.3 Control of the Cardio-Pyloric Valve.- 1.2.4 Pylorus.- 2 Neuromuscular Organization and Pharmacology.- 2.1 Neuromuscular Organization.- 2.1.1 Muscle Fibers.- 2.1.2 Motoneurons.- 2.1.3 Neuromuscular Synapses.- 2.2 Neuromuscular Pharmacology.- 2.2.1 Neuromuscular Transmitters.- 2.2.2 Modulatory Effects.- 2.3 Conclusion.- Appendix: Conditional Regenerative Properties in the Pyloric Dilator Muscle: Their Functional Implications.- 3 Neural Circuits.- 3.1 Circuits of the Stomatogastric Ganglion.- 3.1.1 Pyloric Circuit.- 3.1.2 Gastric Circuit.- 3.1.3 Synapses Between Neurons of the Gastric and Pyloric Circuits.- 3.2 COG Neurons and the STG Circuits.- 3.3 Descending Inputs to the STG Circuits.- 3.4 Other Stomatogastric Circuits.- 3.4.1 Cardiac Circuit.- 3.4.2 Oesophageal Circuit.- 3.5 Evidence for Monosynaptic Nature of STG Synapses.- 3.5.1 Constant Latency Test.- 3.5.2 High Ca2+ Test.- 3.5.3 TEA Test.- 3.5.4 Controls: Electrical Synapses.- 3.6 Significance of Circuit Analyses.- Appendix: PY Cell Types in the Stomatogastric Ganglion of Panulirus.- 4 Cellular and Synaptic Properties.- 4.1 Passive Electrotonic Properties and Neuronal Geometry.- 4.2 Repetitive Firing and Rebound.- 4.3 Graded Synaptic Transmission.- 4.3.1 Input-Output Properties of Graded Transmission.- Cells Studied.- Waveform.- Release Threshold.- Rebound.- Conditioning.- Inferences from Input-Output Properties.- 4.3.2 GST and the Oscillation Cycle.- Current-induced Cycling Under TTX.- Drug-induced Cycling Under TTX.- Focal TTX Block.- Intact Spiking Ganglia.- 4.3.3 Conclusion.- 4.4 Plateau Potentials.- 4.4.1 Criteria for Regenerative Plateaus.- 4.4.2 Cell Types Exhibiting Plateaus.- 4.4.3 Functional Roles of Regenerative Plateaus.- 4.5 Synaptic Modulation of Neuronal Properties.- 4.5.1 Synaptic Induction of Regenerative Plateaus.- 4.5.2 Plateau Induction by Identified Inputs.- Dopaminergic Inputs.- APM.- Multiaction Synapses from ivn TF.- 4.6 Pacemaker Neurons.- 4.6.1 Conditional Bursters.- 4.6.2 AB Cell.- 4.6.3 LP Cell.- 4.6.4 DG (CP) Cell.- 4.7 Analysis of Membrane Currents.- 4.7.1 Pyloric Pacemaker Neurons.- 4.7.2 Inward Current.- 4.7.3 Outward Current.- 4.7.4 Modulation by Transmitters.- 4.7.5 Implications of Modulation for Studies on Ionic Mechanisms.- 4.8 Conclusions.- Appendix: Ionic Basis of Pacemaker Activity in Stomatogastric Neurons.- 5 Pyloric Mechanisms.- 5.1 Characteristics of the In Vitro Pyloric Motor Pattern.- 5.2 Why Do Pyloric Cells Fire in Bursts?.- 5.2.1 Intrinsic Mechanisms for Burst Generation.- 5.2.2 Network Mechanisms for Burst Generation.- 5.2.3 Intrinsic BPPs and Network “Burstiness”: Relative Contributions.- 5.3 What Mechanisms Determine the Phase Relationships of the Bursts Within the Pyloric Pattern?.- 5.3.1 Roles of Inhibitory Chemical Synapses.- 5.3.2 Roles of Electrotonic Coupling.- 5.3.3 Roles of Excitatory Chemical Synapses.- 5.4 What Mechanisms Determine the Overall Frequency of the Pyloric Pattern?.- 5.4.1 Intrinsic and Synaptic Mechanisms for Frequency Control.- 5.4.2 Control of Pattern Frequency by Extrinsic Inputs.- 5.5 The Pyloric Pattern: a Mechanistic Explanation.- 5.6 Concluding Remarks.- Appendix A: Pyloric Pattern Generation in Panulirus interruptus Is Terminated by Blockade of Activity Through the Stomatogastric Nerve.- Appendix B: The Pyloric Pacemakers of the Crayfish Stomatogastric Ganglion Are Conditional Burster Neurons.- 6 Gastric Mill Mechanisms.- 6.1 Introduction.- 6.2 Behavior.- 6.2.1 Semi-intact Preparations.- 6.2.2 EMG and Other Studies on Intact Animals.- 6.2.3 Endoscopic Studies In Vivo.- 6.3 Motor Patterns Recorded In Vitro.- 6.4 Building Block Concept and Modulation.- 6.4.1 Cellular Properties.- Bursting Pacemaker Potentials (BPPs).- Plateau Potentials.- 6.4.2 Synaptic Properties.- Synaptic Strength.- Delayed EPSPs.- 6.4.3 Inputs to the Gastric System.- 6.4.4 Gastric Circuits.- Monosynaptic Connections.- Functional Connections.- Total Circuit.- Simplified Lumped Circuit.- 6.5 Generation of the Gastric Pattern.- 6.5.1 Hypothesis.- 6.5.2 Testing the Hypothesis.- Perturbing the System: Single Cell Hyperpolarization.- Resetting Experiments.- Killing Cells.- 6.5.3 Current Status of the Gastric System.- Source of Bursts.- Source of Pattern.- 6.6 Conclusion and Prognosis.- Appendix A: How Many Generators in the Gastric Mill System?.- Appendix B: Spontaneous and Proctolin-Induced Modes of Operation of the Isolated Gastric Oscillator and of the Gastric Mill in the Intact Animal.- 7 Modeling Stomatogastric Ganglion.- 7.1 Dendritic Tree Models.- 7.2 Network Models.- 7.3 Theoretical Network Models.- 7.4 Physiological Models.- 7.5 Parameter-fitted Models: The Gastric System.- 7.5.1 PABLO.- 7.5.2 SYNETSIM 1.1.- 7.5.3 Friesen-Lewis Neuromime Model.- 7.5.4 Thompson-Little Model.- 7.5.5 Conclusion...- 7.6 Parameter-measured Models: The Pyloric System.- 7.6.1 SYNETSIM 1.2.- 7.6.2 SYNETSIM 2.2.- 7.6.3 SYNETSIM 2.3.- 7.6.4 Raper’s Chemotonic Model.- 7.6.5 SYNETSIM 2.4.- 7.6.6 Voltage-clamp Modeling.- 7.6.7 Conclusions.- Appendix: Electrical Structure and Synaptic Integration: A Multicompartment Model of a Stomatogastric Neuron.- 8 Extrinsic Inputs.- 8.1 Introduction.- 8.2 Potentialities for Flexibility Built into the Stomatogastric CPGs.- 8.2.1 Conditional Oscillations in Pyloric and Gastric Neurons.- 8.2.2 Nonlinear Input-Output Relations of Stomatogastric Oscillators.- 8.3 Modulatory Inputs.- 8.3.1 The Anterior Pyloric Modulator (APM).- Induction of Burstiness in Pyloric Neurons.- Modulation of Burstiness in Pyloric Neurons.- Gastric Activation.- 8.3.2 The ivn Through Fibers.- 8.3.3 The ion Fibers.- 8.4 Rhythmic Inputs.- 8.4.1 Rhythmic Control of the Pyloric Network.- The Commissural Pyloric Oscillator (CPO).- The P Cells.- 8.4.2 Rhythmic Control of the Gastric Network.- The Commissural Gastric Oscillator (CGO).- The E Cells.- Other Inputs.- 8.5 ivn Through Fibers.- 8.6 Sensory Inputs.- 8.6.1 The Posterior Stomach Receptors (PSRs).- Rhythmic Discharge of the PSRs.- Long-lasting Activation of the Gastric and Pyloric CPGs.- Triggering of Rhythmic Activity of the Gastric CPG.- Entrainment of Gastric and Pyloric Rhythms.- Functional Significance.- 8.6.2 The Anterior Gastric Receptor (AGR).- 8.6.3 Other Inputs.- 8.7 Conclusion.- 8.7.1 Control of Intracycle Pattern Generation.- 8.7.2 Control of Rhythm Generation.- Appendix A: Cellular Integration in a Gastric Proprioceptive Pathway.- Appendix B: Chronic Effects of De-afferentation on the Stomatogastric Ganglion of Panulirus.- Appendix C: Contingent Effects of Synaptic Input to the Pyloric Oscillator.- 9 Neurotransmitters and Neuromodulators.- 9.1 Introduction.- 9.2 Identification of Neurotransmitters Used by STG Neurons.- 9.2.1 Neuromuscular Junctions.- Identification of Cholinergic Motoneurons.- Pharmacological Properties and Characteristics of ACh Synaptic Sites and Receptors.- Identification of Glutamatergic Motoneurons.- Pharmacological Properties and Characteristics of Glutamate Synaptic Sites and Receptors.- Extrajunctional ACh, Glutamate, and GABA Receptors.- Peptide and Amine Modulation of Neuromuscular Junctions.- Species Differences in Neurotransmitters and Neuromodulators Active at Neuromuscular Junctions.- 9.2.2 Neurotransmitters Released by STG Neurons at Central Synapses.- Pharmacology of ACh Responses of STG Neurons.- Inhibitory Cholinergic Synapses.- Pharmacology of Glutamate Responses on STG Neurons.- Inhibitory Glutamatergic Synapses.- Electrically Coupled Neurons Release Different Neurotransmitters.- 9.3 Identification of Neurotransmitters and Modulators Found in Inputs to the STG.- 9.3.1 ivnTF-Histamine.- 9.3.2 APM-ACh.- 9.3.3 Dopamine.- 9.3.4 Serotonin.- 9.3.5 Octopamine.- 9.3.6 GABA.- 9.3.7 Proctolin.- 9.3.8 FMRFamide-like Peptides.- 9.3.9 Substance P-like Peptide.- 9.3.10 Other Peptides.- 9.3.11 Species Differences in Input Fibers.- 9.4 Conclusions.- 9.4.1 Why This Transmitter Organization?.- 9.4.2 Why So Many Different Neurotransmitters in Input Fibers?.- 9.4.3 Which STG Neurons Are Influenced by the Modulatory Inputs?.- 9.4.4 Mechanisms of Action of Modulators.- Single vs Multiple Classes of Receptors and Physiological Responses.- Biochemical and Biophysical Mechanisms.- Modification of Synaptic Strength and Efficacy.- 9.4.5 Interactions Among Modulators and Modulatory Neurons.- 9.4.6 Colocalization of Neurotransmitters.- 9.4.7 Future Vistas.- Appendix A: Dopaminergic Modulation of the Lobster Pyloric Pacemaker Potential Is Enhanced by Concurrent Inhibition of Cyclic Nucleotide Phosphodiesterase.- Appendix B: Cocaine Activates the Motor Output of the Stomatogastric Ganglion.- 10 Comparison with Other Systems.- 10.1 Introduction.- 10.2 Well-known Oscillatory Networks.- 10.2.1 Tritonia Swim Generator.- 10.2.2 Lobster Cardiac Ganglion.- 10.2.3 Mixed Oscillators.- Leech Heartbeat Oscillator.- Snail Feeding CPG.- 10.3 Some Generalities.- References.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews