The Nature of Mathematical Modeling
This book first covers exact and approximate analytical techniques (ordinary differential and difference equations, partial differential equations, variational principles, stochastic processes); numerical methods (finite differences for ODE's and PDE's, finite elements, cellular automata); model inference based on observations (function fitting, data transforms, network architectures, search techniques, density estimation); as well as the special role of time in modeling (filtering and state estimation, hidden Markov processes, linear and nonlinear time series). Each of the topics in the book would be the worthy subject of a dedicated text, but only by presenting the material in this way is it possible to make so much material accessible to so many people. Each chapter presents a concise summary of the core results in an area, providing an orientation to what they can (and cannot) do, enough background to use them to solve typical problems, and pointers to access the literature for particular applications.
1100491981
The Nature of Mathematical Modeling
This book first covers exact and approximate analytical techniques (ordinary differential and difference equations, partial differential equations, variational principles, stochastic processes); numerical methods (finite differences for ODE's and PDE's, finite elements, cellular automata); model inference based on observations (function fitting, data transforms, network architectures, search techniques, density estimation); as well as the special role of time in modeling (filtering and state estimation, hidden Markov processes, linear and nonlinear time series). Each of the topics in the book would be the worthy subject of a dedicated text, but only by presenting the material in this way is it possible to make so much material accessible to so many people. Each chapter presents a concise summary of the core results in an area, providing an orientation to what they can (and cannot) do, enough background to use them to solve typical problems, and pointers to access the literature for particular applications.
73.0 In Stock
The Nature of Mathematical Modeling

The Nature of Mathematical Modeling

by Neil Gershenfeld
The Nature of Mathematical Modeling

The Nature of Mathematical Modeling

by Neil Gershenfeld

Paperback(Reissue)

$73.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This book first covers exact and approximate analytical techniques (ordinary differential and difference equations, partial differential equations, variational principles, stochastic processes); numerical methods (finite differences for ODE's and PDE's, finite elements, cellular automata); model inference based on observations (function fitting, data transforms, network architectures, search techniques, density estimation); as well as the special role of time in modeling (filtering and state estimation, hidden Markov processes, linear and nonlinear time series). Each of the topics in the book would be the worthy subject of a dedicated text, but only by presenting the material in this way is it possible to make so much material accessible to so many people. Each chapter presents a concise summary of the core results in an area, providing an orientation to what they can (and cannot) do, enough background to use them to solve typical problems, and pointers to access the literature for particular applications.

Product Details

ISBN-13: 9780521210508
Publisher: Cambridge University Press
Publication date: 06/23/2011
Edition description: Reissue
Pages: 358
Product dimensions: 6.70(w) x 9.50(h) x 0.80(d)

Table of Contents

Preface; 1. Introduction; Part I. Analytical Models: 2. Ordinary differential and difference equations; 3. Partial differential equations; 4. Variational principles; 5. Random systems; Part II. Numerical Models: 6. Finite differences: ordinary difference equations; 7. Finite differences: partial differential equations; 8. Finite elements; 9. Cellular automata and lattice gases; Part III. Observational Models: 10. Function fitting; 11. Transforms; 12. Architectures; 13. Optimization and search; 14. Clustering and density estimation; 15. Filtering and state estimation; 16. Linear and nonlinear time series; Appendix 1. Graphical and mathematical software; Appendix 2. Network programming; Appendix 3. Benchmarking; Appendix 4. Problem solutions; Bibliography.
From the B&N Reads Blog

Customer Reviews