Transistor Physics
This book is intended as an introduction to the application of physical theory to the study of semiconductors and transistor devices. The book is based on lecture courses given by the authors to second and third year honours students in the Electronics Department of Southampton University, England. Some elementary knowledge of physics, circuit theory, and vector methods is assumed. The book deals almost exc1u­ sively with the theoretical aspects, but references are given to experimental work. The first two chapters discuss c1assical atomic theory and quantum mechanical applications to electron energy levels in atoms, in particular the hydrogen atom, and in one-dimensional crystalline solids leading to the distinctions between metals, insulators, and semiconductors. Chapter 3 deals with statistical mechanics in some detail, so that the reader can appreciate the historical background leading to the Fermi­ Dirac statistics for electrons in metals and semiconductors, and in chapter 4 these statistics are applied to determine the current carrier density in various types of semiconductor. Equations for drift and diffusion currents are obtained in chapter 5, and the results applied to uiliform and graded impurity semiconductors in chapter 6. Current flow across p-n junctions is analysed in chapter 7, and the p-n-p transistor theory is developed in chapter 8. The discussion is limited to p-n-p transistors, but similar results apply for the n-p-n transistor.
1001032389
Transistor Physics
This book is intended as an introduction to the application of physical theory to the study of semiconductors and transistor devices. The book is based on lecture courses given by the authors to second and third year honours students in the Electronics Department of Southampton University, England. Some elementary knowledge of physics, circuit theory, and vector methods is assumed. The book deals almost exc1u­ sively with the theoretical aspects, but references are given to experimental work. The first two chapters discuss c1assical atomic theory and quantum mechanical applications to electron energy levels in atoms, in particular the hydrogen atom, and in one-dimensional crystalline solids leading to the distinctions between metals, insulators, and semiconductors. Chapter 3 deals with statistical mechanics in some detail, so that the reader can appreciate the historical background leading to the Fermi­ Dirac statistics for electrons in metals and semiconductors, and in chapter 4 these statistics are applied to determine the current carrier density in various types of semiconductor. Equations for drift and diffusion currents are obtained in chapter 5, and the results applied to uiliform and graded impurity semiconductors in chapter 6. Current flow across p-n junctions is analysed in chapter 7, and the p-n-p transistor theory is developed in chapter 8. The discussion is limited to p-n-p transistors, but similar results apply for the n-p-n transistor.
54.99 In Stock
Transistor Physics

Transistor Physics

by K. G. Nichols
Transistor Physics

Transistor Physics

by K. G. Nichols

Paperback(1966)

$54.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This book is intended as an introduction to the application of physical theory to the study of semiconductors and transistor devices. The book is based on lecture courses given by the authors to second and third year honours students in the Electronics Department of Southampton University, England. Some elementary knowledge of physics, circuit theory, and vector methods is assumed. The book deals almost exc1u­ sively with the theoretical aspects, but references are given to experimental work. The first two chapters discuss c1assical atomic theory and quantum mechanical applications to electron energy levels in atoms, in particular the hydrogen atom, and in one-dimensional crystalline solids leading to the distinctions between metals, insulators, and semiconductors. Chapter 3 deals with statistical mechanics in some detail, so that the reader can appreciate the historical background leading to the Fermi­ Dirac statistics for electrons in metals and semiconductors, and in chapter 4 these statistics are applied to determine the current carrier density in various types of semiconductor. Equations for drift and diffusion currents are obtained in chapter 5, and the results applied to uiliform and graded impurity semiconductors in chapter 6. Current flow across p-n junctions is analysed in chapter 7, and the p-n-p transistor theory is developed in chapter 8. The discussion is limited to p-n-p transistors, but similar results apply for the n-p-n transistor.

Product Details

ISBN-13: 9780412210808
Publisher: Springer Netherlands
Publication date: 04/26/1973
Series: Modern Electrical Studies
Edition description: 1966
Pages: 332
Product dimensions: 5.00(w) x 7.99(h) x 0.03(d)

Table of Contents

1 Classical atomic, theory and interatomic binding.- 2 Quantum mechanics and band theory.- 3 Statistical mechanics.- 4 Semiconductors in thermodynamic equilibrium.- 5 Current flow in semiconductors.- 6 Semiconductors in non-equilibrium conditions.- 7 Current flow across semiconductor junctions.- 8 Minority carrier transistors.- 9 Space-charge-limited currents in semiconductors and insulators Majority carrier transistors.- Appendices.- II Common-emitter characteristics.- III The transistor as a charge controlled device. Circuit problems.
From the B&N Reads Blog

Customer Reviews