Uncertainty Modeling for Data Mining: A Label Semantics Approach
Machine learning and data mining are inseparably connected with uncertainty. The observable data for learning is usually imprecise, incomplete or noisy. Uncertainty Modeling for Data Mining: A Label Semantics Approach introduces 'label semantics', a fuzzy-logic-based theory for modeling uncertainty. Several new data mining algorithms based on label semantics are proposed and tested on real-world datasets. A prototype interpretation of label semantics and new prototype-based data mining algorithms are also discussed. This book offers a valuable resource for postgraduates, researchers and other professionals in the fields of data mining, fuzzy computing and uncertainty reasoning.
1133129748
Zengchang Qin is an associate professor at the School of Automation Science and Electrical Engineering, Beihang University, China; Yongchuan Tang is an associate professor at the College of Computer Science, Zhejiang University, China.
Uncertainty Modeling for Data Mining: A Label Semantics Approach
Machine learning and data mining are inseparably connected with uncertainty. The observable data for learning is usually imprecise, incomplete or noisy. Uncertainty Modeling for Data Mining: A Label Semantics Approach introduces 'label semantics', a fuzzy-logic-based theory for modeling uncertainty. Several new data mining algorithms based on label semantics are proposed and tested on real-world datasets. A prototype interpretation of label semantics and new prototype-based data mining algorithms are also discussed. This book offers a valuable resource for postgraduates, researchers and other professionals in the fields of data mining, fuzzy computing and uncertainty reasoning.
Zengchang Qin is an associate professor at the School of Automation Science and Electrical Engineering, Beihang University, China; Yongchuan Tang is an associate professor at the College of Computer Science, Zhejiang University, China.
109.0
Out Of Stock
5
1

Uncertainty Modeling for Data Mining: A Label Semantics Approach
291
Uncertainty Modeling for Data Mining: A Label Semantics Approach
291
109.0
Out Of Stock
Product Details
ISBN-13: | 9783642412509 |
---|---|
Publisher: | Springer Berlin Heidelberg |
Publication date: | 02/18/2015 |
Series: | Advanced Topics in Science and Technology in China |
Edition description: | 2014 |
Pages: | 291 |
Product dimensions: | 6.10(w) x 9.25(h) x 0.04(d) |
From the B&N Reads Blog