User-friendly Introduction to PAC-Bayes Bounds
Probably approximately correct (PAC) bounds have been an intensive field of research over the last two decades. Hundreds of papers have been published and much progress has been made resulting in PAC-Bayes bounds becoming an important technique in machine learning.
The proliferation of research has made the field for a newcomer somewhat daunting. In this tutorial, the author guides the reader through the topic’s complexity and large body of publications. Covering both empirical and oracle PAC-bounds, this book serves as a primer for students and researchers who want to get to grips quickly with the subject. It provides a friendly introduction that illuminates the basic theory and points to the most important publications to gain deeper understanding of any particular aspect.
1144712467
The proliferation of research has made the field for a newcomer somewhat daunting. In this tutorial, the author guides the reader through the topic’s complexity and large body of publications. Covering both empirical and oracle PAC-bounds, this book serves as a primer for students and researchers who want to get to grips quickly with the subject. It provides a friendly introduction that illuminates the basic theory and points to the most important publications to gain deeper understanding of any particular aspect.
User-friendly Introduction to PAC-Bayes Bounds
Probably approximately correct (PAC) bounds have been an intensive field of research over the last two decades. Hundreds of papers have been published and much progress has been made resulting in PAC-Bayes bounds becoming an important technique in machine learning.
The proliferation of research has made the field for a newcomer somewhat daunting. In this tutorial, the author guides the reader through the topic’s complexity and large body of publications. Covering both empirical and oracle PAC-bounds, this book serves as a primer for students and researchers who want to get to grips quickly with the subject. It provides a friendly introduction that illuminates the basic theory and points to the most important publications to gain deeper understanding of any particular aspect.
The proliferation of research has made the field for a newcomer somewhat daunting. In this tutorial, the author guides the reader through the topic’s complexity and large body of publications. Covering both empirical and oracle PAC-bounds, this book serves as a primer for students and researchers who want to get to grips quickly with the subject. It provides a friendly introduction that illuminates the basic theory and points to the most important publications to gain deeper understanding of any particular aspect.
95.0
In Stock
5
1

User-friendly Introduction to PAC-Bayes Bounds
144
User-friendly Introduction to PAC-Bayes Bounds
144Paperback
$95.00
95.0
In Stock
Product Details
ISBN-13: | 9781638283263 |
---|---|
Publisher: | Now Publishers |
Publication date: | 01/22/2024 |
Series: | Foundations and Trends(r) in Machine Learning , #64 |
Pages: | 144 |
Product dimensions: | 6.14(w) x 9.21(h) x 0.31(d) |
From the B&N Reads Blog