Verification of Sequential and Concurrent Programs
HIS BOOK CONTAINS a most comprehensive text that presents syntax-directed and compositional methods for the formal veri?- T cation of programs. The approach is not language-bounded in the sense that it covers a large variety of programming models and features that appear in most modern programming languages. It covers the classes of - quential and parallel, deterministic and non-deterministic, distributed and object-oriented programs. For each of the classes it presents the various c- teria of correctness that are relevant for these classes, such as interference freedom, deadlock freedom, and appropriate notions of liveness for parallel programs. Also, special proof rules appropriate for each class of programs are presented. In spite of this diversity due to the rich program classes cons- ered, there exist a uniform underlying theory of verification which is synt- oriented and promotes compositional approaches to verification, leading to scalability of the methods. The text strikes the proper balance between mathematical rigor and - dactic introduction of increasingly complex rules in an incremental manner, adequately supported by state-of-the-art examples. As a result it can serve as a textbook for a variety of courses on different levels and varying durations. It can also serve as a reference book for researchers in the theory of veri?- tion, in particular since it contains much material that never before appeared in book form. This is specially true for the treatment of object-oriented p- grams which is entirely novel and is strikingly elegant.
1117300194
Verification of Sequential and Concurrent Programs
HIS BOOK CONTAINS a most comprehensive text that presents syntax-directed and compositional methods for the formal veri?- T cation of programs. The approach is not language-bounded in the sense that it covers a large variety of programming models and features that appear in most modern programming languages. It covers the classes of - quential and parallel, deterministic and non-deterministic, distributed and object-oriented programs. For each of the classes it presents the various c- teria of correctness that are relevant for these classes, such as interference freedom, deadlock freedom, and appropriate notions of liveness for parallel programs. Also, special proof rules appropriate for each class of programs are presented. In spite of this diversity due to the rich program classes cons- ered, there exist a uniform underlying theory of verification which is synt- oriented and promotes compositional approaches to verification, leading to scalability of the methods. The text strikes the proper balance between mathematical rigor and - dactic introduction of increasingly complex rules in an incremental manner, adequately supported by state-of-the-art examples. As a result it can serve as a textbook for a variety of courses on different levels and varying durations. It can also serve as a reference book for researchers in the theory of veri?- tion, in particular since it contains much material that never before appeared in book form. This is specially true for the treatment of object-oriented p- grams which is entirely novel and is strikingly elegant.
89.99 In Stock
Verification of Sequential and Concurrent Programs

Verification of Sequential and Concurrent Programs

Verification of Sequential and Concurrent Programs

Verification of Sequential and Concurrent Programs

Paperback(Third Edition 2009)

$89.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

HIS BOOK CONTAINS a most comprehensive text that presents syntax-directed and compositional methods for the formal veri?- T cation of programs. The approach is not language-bounded in the sense that it covers a large variety of programming models and features that appear in most modern programming languages. It covers the classes of - quential and parallel, deterministic and non-deterministic, distributed and object-oriented programs. For each of the classes it presents the various c- teria of correctness that are relevant for these classes, such as interference freedom, deadlock freedom, and appropriate notions of liveness for parallel programs. Also, special proof rules appropriate for each class of programs are presented. In spite of this diversity due to the rich program classes cons- ered, there exist a uniform underlying theory of verification which is synt- oriented and promotes compositional approaches to verification, leading to scalability of the methods. The text strikes the proper balance between mathematical rigor and - dactic introduction of increasingly complex rules in an incremental manner, adequately supported by state-of-the-art examples. As a result it can serve as a textbook for a variety of courses on different levels and varying durations. It can also serve as a reference book for researchers in the theory of veri?- tion, in particular since it contains much material that never before appeared in book form. This is specially true for the treatment of object-oriented p- grams which is entirely novel and is strikingly elegant.

Product Details

ISBN-13: 9781447125136
Publisher: Springer London
Publication date: 03/04/2012
Series: Texts in Computer Science
Edition description: Third Edition 2009
Pages: 502
Product dimensions: 6.10(w) x 9.25(h) x 0.04(d)

Table of Contents

In the Beginning.- Preliminaries.- Deterministic Programs.- While Programs.- Recursive Programs.- Recursive Programs with Parameters.- Object-Oriented Programs.- Parallel Programs.- Disjoint Parallel Programs.- Parallel Programs with Shared Variables.- Parallel Programs with Synchronization.- Nondeterministic and Distributed Programs.- Nondeterministic Programs.- Distributed Programs.- Fairness.

What People are Saying About This

From the Publisher

"The Third Edition is an excellent new version of a valuable book. Enhanced with new material on recursion and object-oriented programs, this book now covers methods for verifying sequential, object-oriented, and concurrent programs using well-chosen sample programming languages that highlight fundamental issues and avoid incidental complications. With growing challenges today to produce correct software systems for the future, this book lets students wisely use a few months now to master concepts that will last them a lifetime." (John C. Mitchell, Stanford University)

"Verification of programs is the Holy Grail of Computer Science. This book makes its pursuit seem both pleasant and worthwhile. Its unique strength lies in the way the authors have deconstructed the apparently complex subject such that each piece carries exactly one idea. The beauty of the presentation extends from the overall structure of the book to the individual explanations, definitions and proofs." (Andreas Podelski, University of Freiburg)

"Program verification became an interesting research topic of computing science about forty years ago. Research literature on this topic has grown quickly in accordance with rapid development of various programming paradigms. Therefore it has been a challenge to university lecturers on program verification how to carefully select an easy but comprehensive approach, which can fit in with most programming paradigms and can be taught in a systematic way. The publication of this book is an answer to the challenge, and to my knowledge quite many university lecturers have been influenced by the earlier editions of this book if not chosen them as textbook. Given that the third edition includes verification of object-oriented programs – the most fashionable programming paradigm, and presents it in a way coherent with the approach adopted by the earlier ones, we can expect a further impact of the new edition on university teachings." (ZhouChaochen, Chinese Academy of Sciences, Beijing)

From the B&N Reads Blog

Customer Reviews