Verst�rkungslernen in Robotik und autonomen Systemen
Reinforcement Learning (RL) hat sich zu einem transformativen Ansatz im Bereich der autonomen Systeme entwickelt und ermöglicht intelligente Entscheidungsfindung und Steuerung in der Robotik, bei selbstfahrenden Autos, im Gesundheitswesen, in der Industrieautomatisierung und bei intelligenter Infrastruktur. In dieser Diskussion haben wir die grundlegenden Konzepte, Methoden, Herausforderungen und realen Anwendungen von RL in autonomen Systemen untersucht und dabei sowohl ihr Potenzial als auch ihre Grenzen aufgezeigt . Die Anwendung von RL in der Robotik und in autonomen Systemen wird durch Markov-Entscheidungsprozesse (MDPs) untermauert, die einen strukturierten Rahmen für sequenzielle Entscheidungsfindungbieten . Die Entwicklung von wertbasierten Methoden wie Deep Q Networks (DQN) und richtlinienbasierten Ansätzen wie Policy Gradient und Actor Critic hat es Robotern und autonomen Agenten ermöglicht, komplexe Verhaltensweisen durch Versuch und Irrtum zu erlernen. Darüber hinaus bieten modellfreie und modellbasierte RL-Techniken unterschiedliche Kompromisse in Bezug auf Probeeffizienz und Anpassungsfähigkeit und ebnen den Weg für vielseitigere und praktischere lernbasierte Steuerungen.
1148485610
Verst�rkungslernen in Robotik und autonomen Systemen
Reinforcement Learning (RL) hat sich zu einem transformativen Ansatz im Bereich der autonomen Systeme entwickelt und ermöglicht intelligente Entscheidungsfindung und Steuerung in der Robotik, bei selbstfahrenden Autos, im Gesundheitswesen, in der Industrieautomatisierung und bei intelligenter Infrastruktur. In dieser Diskussion haben wir die grundlegenden Konzepte, Methoden, Herausforderungen und realen Anwendungen von RL in autonomen Systemen untersucht und dabei sowohl ihr Potenzial als auch ihre Grenzen aufgezeigt . Die Anwendung von RL in der Robotik und in autonomen Systemen wird durch Markov-Entscheidungsprozesse (MDPs) untermauert, die einen strukturierten Rahmen für sequenzielle Entscheidungsfindungbieten . Die Entwicklung von wertbasierten Methoden wie Deep Q Networks (DQN) und richtlinienbasierten Ansätzen wie Policy Gradient und Actor Critic hat es Robotern und autonomen Agenten ermöglicht, komplexe Verhaltensweisen durch Versuch und Irrtum zu erlernen. Darüber hinaus bieten modellfreie und modellbasierte RL-Techniken unterschiedliche Kompromisse in Bezug auf Probeeffizienz und Anpassungsfähigkeit und ebnen den Weg für vielseitigere und praktischere lernbasierte Steuerungen.
71.0 Out Of Stock
Verst�rkungslernen in Robotik und autonomen Systemen

Verst�rkungslernen in Robotik und autonomen Systemen

Verst�rkungslernen in Robotik und autonomen Systemen

Verst�rkungslernen in Robotik und autonomen Systemen

Paperback

$71.00 
  • SHIP THIS ITEM
    Temporarily Out of Stock Online
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Reinforcement Learning (RL) hat sich zu einem transformativen Ansatz im Bereich der autonomen Systeme entwickelt und ermöglicht intelligente Entscheidungsfindung und Steuerung in der Robotik, bei selbstfahrenden Autos, im Gesundheitswesen, in der Industrieautomatisierung und bei intelligenter Infrastruktur. In dieser Diskussion haben wir die grundlegenden Konzepte, Methoden, Herausforderungen und realen Anwendungen von RL in autonomen Systemen untersucht und dabei sowohl ihr Potenzial als auch ihre Grenzen aufgezeigt . Die Anwendung von RL in der Robotik und in autonomen Systemen wird durch Markov-Entscheidungsprozesse (MDPs) untermauert, die einen strukturierten Rahmen für sequenzielle Entscheidungsfindungbieten . Die Entwicklung von wertbasierten Methoden wie Deep Q Networks (DQN) und richtlinienbasierten Ansätzen wie Policy Gradient und Actor Critic hat es Robotern und autonomen Agenten ermöglicht, komplexe Verhaltensweisen durch Versuch und Irrtum zu erlernen. Darüber hinaus bieten modellfreie und modellbasierte RL-Techniken unterschiedliche Kompromisse in Bezug auf Probeeffizienz und Anpassungsfähigkeit und ebnen den Weg für vielseitigere und praktischere lernbasierte Steuerungen.

Product Details

ISBN-13: 9786209087929
Publisher: Verlag Unser Wissen
Publication date: 10/07/2025
Pages: 116
Product dimensions: 6.00(w) x 9.00(h) x 0.28(d)
Language: German
From the B&N Reads Blog

Customer Reviews