Vibration Behavior in Ceramic-Matrix Composites
This book focuses on the vibration behavior of ceramic-matrix composites (CMCs), including (1) vibration natural frequency of intact and damaged CMCs; (2) vibration damping of CMCs considering fibers debonding and fracture; (3) temperature-dependent vibration damping of CMCs; (4) time-dependent vibration damping of CMCs; and (5) cyclic-dependent vibration damping of CMCs. Ceramic-matrix composites (CMCs) possess low material density (i.e., only 1/4 or 1/3 of high-temperature alloy) and high-temperature resistance, which can reduce cooling air and improve structure efficiency. Understanding the failure mechanisms and internal damage evolution represents an important step to ensure reliability and safety of CMCs. Relationships between microstructure, damage mechanisms, vibration natural frequency, and vibration damping of CMCs are established. This book helps the material scientists and engineering designers to understand and master the vibration behavior of CMCs at room and elevated temperatures.
1142436696
Vibration Behavior in Ceramic-Matrix Composites
This book focuses on the vibration behavior of ceramic-matrix composites (CMCs), including (1) vibration natural frequency of intact and damaged CMCs; (2) vibration damping of CMCs considering fibers debonding and fracture; (3) temperature-dependent vibration damping of CMCs; (4) time-dependent vibration damping of CMCs; and (5) cyclic-dependent vibration damping of CMCs. Ceramic-matrix composites (CMCs) possess low material density (i.e., only 1/4 or 1/3 of high-temperature alloy) and high-temperature resistance, which can reduce cooling air and improve structure efficiency. Understanding the failure mechanisms and internal damage evolution represents an important step to ensure reliability and safety of CMCs. Relationships between microstructure, damage mechanisms, vibration natural frequency, and vibration damping of CMCs are established. This book helps the material scientists and engineering designers to understand and master the vibration behavior of CMCs at room and elevated temperatures.
199.99 In Stock
Vibration Behavior in Ceramic-Matrix Composites

Vibration Behavior in Ceramic-Matrix Composites

by Longbiao Li
Vibration Behavior in Ceramic-Matrix Composites

Vibration Behavior in Ceramic-Matrix Composites

by Longbiao Li

Hardcover(1st ed. 2023)

$199.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This book focuses on the vibration behavior of ceramic-matrix composites (CMCs), including (1) vibration natural frequency of intact and damaged CMCs; (2) vibration damping of CMCs considering fibers debonding and fracture; (3) temperature-dependent vibration damping of CMCs; (4) time-dependent vibration damping of CMCs; and (5) cyclic-dependent vibration damping of CMCs. Ceramic-matrix composites (CMCs) possess low material density (i.e., only 1/4 or 1/3 of high-temperature alloy) and high-temperature resistance, which can reduce cooling air and improve structure efficiency. Understanding the failure mechanisms and internal damage evolution represents an important step to ensure reliability and safety of CMCs. Relationships between microstructure, damage mechanisms, vibration natural frequency, and vibration damping of CMCs are established. This book helps the material scientists and engineering designers to understand and master the vibration behavior of CMCs at room and elevated temperatures.

Product Details

ISBN-13: 9789811978371
Publisher: Springer Nature Singapore
Publication date: 11/18/2022
Series: Advanced Ceramics and Composites , #5
Edition description: 1st ed. 2023
Pages: 124
Product dimensions: 6.10(w) x 9.25(h) x (d)

About the Author

Dr. Longbiao Li is a lecturer in the College of Civil Aviation at the Nanjing University of Aeronautics and Astronautics. Dr. Li’s research focuses on the vibration, fatigue, damage, fracture, reliability, safety, and durability of aircraft and aero engine. In this research area, he is the first author of 185 SCI journal publications, 8 monographs, 4 edited books, 3 textbooks, 3 chapters, 30 Chinese Patents, and 2 US Patents, and more than 30 refereed conference proceedings. He has been involved in different projects related to structural damage, reliability, and airworthiness design for aircraft and aero engines, supported by the Natural Science Foundation of China, COMAC Company, and AECC Commercial Aircraft Engine Company.

Table of Contents

Introduction.- First matrix cracking behavior in CMCs at room temperature.- First matrix cracking behavior in CMCs at elevated temperature.- Multiple matrix cracking behavior in CMCs at room temperature.- Multiple matrix cracking behavior in CMCs at elevated temperature.- Matrix crack opening behavior in CMCs at room temperature.- Matrix crack opening behavior in CMCs at elevated temperature.- Matrix crack closure behavior in CMCs.
From the B&N Reads Blog

Customer Reviews